The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:7,15,23,31,39,47,55,63,71,79,87
Displaying 1-5 of 5 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A004771 a(n) = 8*n + 7. Or, numbers whose binary expansion ends in 111. +30
43
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415, 423, 431 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
These numbers cannot be expressed as the sum of 3 squares. - Artur Jasinski, Nov 22 2006
These numbers cannot be perfect squares. - Cino Hilliard, Sep 03 2006
a(n-2), n >= 2, appears in the second column of triangle A239126 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
The initial terms 7, 15, 23, 31 are the generating set for the rest of the sequence in the sense that, by Lagrange's Four Square Theorem, any number n of the form 8*k+7 can always be written as a sum of no fewer than four squares, and if n = a^2 + b^2 + c^2 + d^2, then (a mod 4)^2 + (b mod 4)^2 + (c mod 4)^2 + (d mod 4)^2 must be one of 7, 15, 23, 31. - Walter Kehowski, Jul 07 2014
Define a set of consecutive positive odd numbers {1, 3, 5, ..., 12*n + 9} and skip the number 6*n + 5. Then the contraharmonic mean of that set gives this sequence. For example, ContraharmonicMean[{1, 3, 7, 9}] = 7. - Hilko Koning, Aug 27 2018
Jacobi symbol (2, a(n)) = Kronecker symbol (a(n), 2) = 1. - Jianing Song, Aug 28 2018
LINKS
Tanya Khovanova, Recursive Sequences
FORMULA
O.g.f: (7 + x)/(1 - x)^2 = 8/(1 - x)^2 - 1/(1 - x). - R. J. Mathar, Nov 30 2007
a(n) = 2*a(n-1) - a(n-2) for n >= 2. - Vincenzo Librandi, May 28 2011
A056753(a(n)) = 7. - Reinhard Zumkeller, Aug 23 2009
a(n) = t(t(t(n))), where t(i) = 2*i + 1.
a(n) = A004767(2*n+1), for n >= 0. See also A004767(2*n) = A017101(n). - Wolfdieter Lang, Feb 03 2022
From Elmo R. Oliveira, Apr 11 2024: (Start)
E.g.f.: exp(x)*(7 + 8*x).
a(n) = A033954(n+1) - A033954(n). (End)
MAPLE
A004771:=n->8*n+7; seq(A004771(n), n=0..100); # Wesley Ivan Hurt, Dec 22 2013
MATHEMATICA
8 Range[0, 60] + 7 (* or *) Range[7, 500, 8] (* or *) Table[8 n + 7, {n, 0, 60}] (* Bruno Berselli, Dec 28 2016 *)
PROG
(Magma) [8*n+7: n in [0..60]]; // Vincenzo Librandi, May 28 2011
(PARI) a(n)=8*n+7 \\ Charles R Greathouse IV, Sep 23 2012
(Haskell)
a004771 = (+ 7) . (* 8)
a004771_list = [7, 15 ..] -- Reinhard Zumkeller, Jan 29 2013
(GAP) List([0..60], n->8*n+7); # Muniru A Asiru, Aug 28 2018
CROSSREFS
Cf. A007522 (primes), subsequence of A047522.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A059562 Beatty sequence for log(Pi)/(log(Pi)-1). +30
4
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 94, 102, 110, 118, 126, 134, 142, 150, 158, 166, 174, 181, 189, 197, 205, 213, 221, 229, 237, 245, 253, 261, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 355, 363, 371, 379, 387, 395, 403, 411, 419, 427 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.
Eric Weisstein's World of Mathematics, Beatty Sequence
PROG
(PARI) { default(realprecision, 100); b=log(Pi)/(log(Pi) - 1); for (n = 1, 2000, write("b059562.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
(PARI) A059562(n, c=1-1/log(Pi))=n\c \\ Use \pXX to set sufficiently large precision. - M. F. Hasler, Oct 06 2014
CROSSREFS
Beatty complement is A059561.
KEYWORD
nonn,easy
AUTHOR
Mitch Harris, Jan 22 2001
STATUS
approved
A017149 Duplicate of A004771. +30
0
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
LINKS
KEYWORD
dead
STATUS
approved
A029724 Odd numbers congruent to 7 mod 8 such that (2^(h(-n)+2)-n) is a square, where h(-n) is the class number. +30
0
7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 103, 127, 135, 151, 175, 183, 199, 207, 223, 247, 255, 271, 295, 343, 367, 375, 463, 487, 511, 583, 727, 751, 823, 847, 967, 1023, 1087, 1255, 1303, 1423, 1527, 2047, 2143, 3063, 3343, 4447, 5503 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
PROG
(PARI) forstep(n=7, 1e4, 8, if(issquare(2^(qfbclassno(-n)+2)-n), print1(n", "))) \\ Charles R Greathouse IV, May 08 2011
KEYWORD
nonn
AUTHOR
Eric Rains (rains(AT)caltech.edu)
STATUS
approved
A133655 a(n) = 2*A016777(n) + A016777(n-1) - (n+1). +30
0
1, 7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
Equals "1" followed by A004771.
Binomial transform of [1, 6, 2, -2, 2, -2, 2, ...].
G.f.: (2*x^2+5*x+1)/(x-1)^2. - Harvey P. Dale, Sep 13 2011
EXAMPLE
a(3) = 23 = 2*A016777(3) + A016777(2) - 4 = 2*10 + 7 - 4.
a(3) = 23 = (1, 3, 3, 1) dot (1, 6, 2, -2) = (1, 18, 6, -2).
MATHEMATICA
CoefficientList[Series[(2 x^2+5 x+1)/(x-1)^2, {x, 0, 60}], x] (* Harvey P. Dale, Sep 13 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Sep 20 2007
EXTENSIONS
More terms and corrected definition from R. J. Mathar, Jun 08 2008
STATUS
approved
page 1

Search completed in 0.023 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 05:17 EDT 2024. Contains 373393 sequences. (Running on oeis4.)