Search: seq:1,4,1,2,3,1,4
|
| |
|
|
A138967
|
|
Infinite Fibonacci word on the alphabet {1,2,3,4}.
|
|
+30
2
|
|
|
|
1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 2, 3, 1, 2, 3, 1, 4, 1, 2, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
1,2
|
|
|
COMMENTS
|
Start with the infinite Fibonacci word A003849, which is 0100101001001010010... and replace each 0 by 1,2,3 and each 1 by 1,4.
(a(n)) is the unique fixed point of the morphism 1->12, 2->3, 3->14, 4->3, obtained by coding the overlapping 3-block morphism of the Fibonacci morphism according to 010<->1, 100<->2, 001<->3, 101<->4. - Michel Dekking, Sep 28 2017
|
|
|
LINKS
|
|
|
|
FORMULA
|
a(n) = 3 for n = 3, 8, 21, 55, ..., F(2*k), where k>1.
a(n) = 4 for n = 5, 13, 34, 89, ..., F(2*k+1), where k>1.
Let A(n)=floor(n*tau), B(n)=n+floor(n*tau); i.e., A and B are the lower and upper Wythoff sequences, A=A000201, B=A001950. a(n)=1 if n=A(A(k)) for some k; a(n)=2 if n=B(A(k)) for some k; a(n)=3 if n=A(B(k)) for some k; a(n)=4 if n=B(B(k)) for some k.
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
nonn
|
|
|
AUTHOR
|
|
|
|
STATUS
|
approved
|
| |
|
|
| |
|
|
A255825
|
|
A self-generating sequence: a(n) = n for n < 5; a(5n) = a(n); if every 5th term (a(5), a(10), a(15),...) is deleted, this gives back the original sequence.
|
|
+30
1
|
|
|
|
1, 2, 3, 4, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 1, 2, 3, 1, 4, 1, 1, 2, 3, 1, 1, 4, 1, 1, 2, 1, 3, 1, 1, 4, 1, 1, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 1, 4, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 3, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 3, 2, 2, 3, 1, 1, 2, 3, 1, 1, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
1,2
|
|
|
COMMENTS
|
This is the m=5 analog of the m=10 variant A126616. Sequence A117943 is the m=3 analog with all terms decreased by 1.
|
|
|
LINKS
|
|
|
|
FORMULA
|
a(n) = a(n/5) if n==0 (mod 5); a(n) = a(n - floor(n/5)) otherwise.
|
|
|
PROG
|
(PARI) a(n, m=5)=while(n>=m, if(n%m, n-=n\m, n\=m)); n \\ M. F. Hasler, Mar 07 2015
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
nonn
|
|
|
AUTHOR
|
|
|
|
STATUS
|
approved
|
| |
|
Search completed in 0.004 seconds
|