The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,2,3,1,4
Displaying 1-10 of 357 results found. page 1 2 3 4 5 6 7 8 9 10 ... 36
     Sort: relevance | references | number | modified | created      Format: long | short | data
A235791 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of every positive integer in nondecreasing order, and the first element of column k is in row k(k+1)/2. +30
241
1, 2, 3, 1, 4, 1, 5, 2, 6, 2, 1, 7, 3, 1, 8, 3, 1, 9, 4, 2, 10, 4, 2, 1, 11, 5, 2, 1, 12, 5, 3, 1, 13, 6, 3, 1, 14, 6, 3, 2, 15, 7, 4, 2, 1, 16, 7, 4, 2, 1, 17, 8, 4, 2, 1, 18, 8, 5, 3, 1, 19, 9, 5, 3, 1, 20, 9, 5, 3, 2, 21, 10, 6, 3, 2, 1, 22, 10, 6, 4, 2, 1, 23, 11, 6, 4, 2, 1, 24, 11, 7, 4, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The alternating sum of the squares of the elements of the n-th row equals the sum of all divisors of all positive integers <= n, i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*(T(n,k))^2 = A024916(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
For more information see A236104.
The sum of row n gives A060831(n), the sum of the number of odd divisors of all positive integers <= n. - Omar E. Pol, Mar 01 2014. [An equivalent assertion is that the sum of row n of A237048 is the number of odd divisors of n, and this was proved by Hartmut F. W. Hoft in a comment in A237048. - N. J. A. Sloane, Dec 07 2020]
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
From Hartmut F. W. Hoft, Apr 07 2014: (Start)
Mathematica function has been written to check the first property up to n = 20000.
T(n,(sqrt(8n+1)-1)/2+1) = 0 for all n >= 1, which is useful for formulas for A237591 and A237593. (End)
Alternating row sums give A240542. - Omar E. Pol, Apr 16 2014
Conjecture: T(n,k) is also the total number of partitions of all positive integers <= n into exactly k consecutive parts, i.e., the partial column sum of A285898, or in accordance with the triangles of the same family: the partial column sum of A237048. - Omar E. Pol, Apr 28 2017, Nov 24 2020
The above conjecture is true. The proof will be added soon (it uses the generating function for the columns). - N. J. A. Sloane, Nov 24 2020
T(n,k) is also the total length of all line segments between the k-th vertex and the central vertex of the largest Dyck path of the symmetric representation of sigma(n). In other words: T(n,k) is the sum of the last (A003056(n)-k+1) terms of the n-th row of A237591. - Omar E. Pol, Sep 07 2021
T(n,k) is also the Manhattan distance between the k-th vertex and the central vertex of the Dyck path described in the n-th row of the triangle A237593. - Omar E. Pol, Jan 11 2023
LINKS
FORMULA
T(n,k) = ceiling((n+1)/k - (k+1)/2) for 1 <= n, 1 <= k <= floor((sqrt(8n+1)-1)/2) = A003056(n). - Hartmut F. W. Hoft, Apr 07 2014
G.f. for column k (k >= 1): x^(k*(k+1)/2)/( (1-x)*(1-x^k) ). - N. J. A. Sloane, Nov 24 2020
T(n,k) = Sum_{j=1..n} A237048(j,k). - Omar E. Pol, May 18 2017
T(n,k) = sqrt(A236104(n,k)). - Omar E. Pol, Feb 14 2018
Sigma(n) = Sum_{k=1..A003056(n)} (-1)^(k-1) * (T(n,k)^2 - T(n-1,k)^2), assuming that T(k*(k+1)/2-1,k) = 0. - Omar E. Pol, Oct 10 2018
a(s(n,k)) = T(n,k), n >= 1, 1 <= k <= r = floor((sqrt(8*n + 1) - 1)/2), where s(n,k) = r*n - r*(r+1)*(r+2)/6 + k translates position (row n, column k) in the triangle of this sequence to its position in the sequence. - Hartmut F. W. Hoft, Feb 24 2021
EXAMPLE
Triangle begins:
1;
2;
3, 1;
4, 1;
5, 2;
6, 2, 1;
7, 3, 1;
8, 3, 1;
9, 4, 2;
10, 4, 2, 1;
11, 5, 2, 1;
12, 5, 3, 1;
13, 6, 3, 1;
14, 6, 3, 2;
15, 7, 4, 2, 1;
16, 7, 4, 2, 1;
17, 8, 4, 2, 1;
18, 8, 5, 3, 1;
19, 9, 5, 3, 1;
20, 9, 5, 3, 2;
21, 10, 6, 3, 2, 1;
22, 10, 6, 4, 2, 1;
23, 11, 6, 4, 2, 1;
24, 11, 7, 4, 2, 1;
25, 12, 7, 4, 3, 1;
26, 12, 7, 5, 3, 1;
27, 13, 8, 5, 3, 2;
28, 13, 8, 5, 3, 2, 1;
...
For n = 10 the 10th row of triangle is 10, 4, 2, 1, so we have that 10^2 - 4^2 + 2^2 - 1^2 = 100 - 16 + 4 - 1 = 87, the same as A024916(10) = 87, the sum of all divisors of all positive integers <= 10.
From Omar E. Pol, Nov 19 2015: (Start)
Illustration of initial terms in the third quadrant:
. y
Row _|
1 _|1|
2 _|2 _|
3 _|3 |1|
4 _|4 _|1|
5 _|5 |2 _|
6 _|6 _|2|1|
7 _|7 |3 |1|
8 _|8 _|3 _|1|
9 _|9 |4 |2 _|
10 _|10 _|4 |2|1|
11 _|11 |5 _|2|1|
12 _|12 _|5 |3 |1|
13 _|13 |6 |3 _|1|
14 _|14 _|6 _|3|2 _|
15 _|15 |7 |4 |2|1|
16 _|16 _|7 |4 |2|1|
17 _|17 |8 _|4 _|2|1|
18 _|18 _|8 |5 |3 |1|
19 _|19 |9 |5 |3 _|1|
20 _|20 _|9 _|5 |3|2 _|
21 _|21 |10 |6 _|3|2|1|
22 _|22 _|10 |6 |4 |2|1|
23 _|23 |11 _|6 |4 |2|1|
24 _|24 _|11 |7 |4 _|2|1|
25 _|25 |12 |7 _|4|3 |1|
26 _|26 _|12 _|7 |5 |3 _|1|
27 _|27 |13 |8 |5 |3|2 _|
28 |28 |13 |8 |5 |3|2|1|
...
T(n,k) is also the number of cells between the k-th vertical line segment (from left to right) and the y-axis in the n-th row of the structure.
Note that the number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of odd divisors of n.
Also the diagram represents the left part of the front view of the pyramid described in A245092. (End)
For more information about the diagram see A286001. - Omar E. Pol, Dec 19 2020
From Omar E. Pol, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below: _
| |
| |
| |
| |
| |
_ _ _| |
_| _ _|
_| |
| _|
| _ _|
_ _ _ _ _ _| |3 1
|_ _ _ _ _ _ _|
12 5
.
For n = 12 and k = 1 the total length of all line segments between the first vertex and the central vertex of the largest Dyck path is equal to 12, so T(12,1) = 12.
For n = 12 and k = 2 the total length of all line segments between the second vertex and the central vertex of the largest Dyck path is equal to 5, so T(12,2) = 5.
For n = 12 and k = 3 the total length of all line segments between the third vertex and the central vertex of the largest Dyck path is equal to 3, so T(12,3) = 3.
For n = 12 and k = 4 the total length of all line segments between the fourth vertex and the central vertex of the largest Dyck path is equal to 1, so T(12,4) = 1.
Hence the 12th row of triangle is [12, 5, 3, 1]. (End)
MATHEMATICA
row[n_] := Floor[(Sqrt[8*n + 1] - 1)/2]; f[n_, k_] := Ceiling[(n + 1)/k - (k + 1)/2]; Table[f[n, k], {n, 1, 150}, {k, 1, row[n]}] // Flatten (* Hartmut F. W. Hoft, Apr 07 2014 *)
PROG
(PARI) row(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i); \\ Michel Marcus, Mar 27 2014
(Python)
from sympy import sqrt
import math
def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
for n in range(1, 21): print([T(n, k) for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017
CROSSREFS
Columns 1..3: A000027, A008619, A008620.
Operations on rows: A003056 (number of terms), A237591 (differences between terms), A060831 (sums), A339577 (products), A240542 (alternating sums), A236104 (squares), A339576 (sums of squares), A024916 (alternating sums of squares), A237048 (differences between rows), A042974 (right border).
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Jan 23 2014.
STATUS
approved
A302242 Total weight of the n-th multiset multisystem. Totally additive with a(prime(n)) = Omega(n). +30
202
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 0, 1, 2, 3, 1, 3, 1, 2, 1, 2, 2, 3, 2, 2, 2, 1, 0, 2, 1, 3, 2, 3, 3, 3, 1, 1, 3, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 3, 1, 4, 0, 3, 2, 1, 1, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 1, 4, 1, 1, 3, 2, 2, 3, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,7
COMMENTS
A multiset multisystem is a finite multiset of finite multisets of positive integers. The n-th multiset multisystem is constructed by factoring n into prime numbers and then factoring each prime index into prime numbers and taking their prime indices. This produces a unique multiset multisystem for each n, and every possible multiset multisystem is so constructed as n ranges over all positive integers.
LINKS
EXAMPLE
Sequence of finite multisets of finite multisets of positive integers begins: (), (()), ((1)), (()()), ((2)), (()(1)), ((11)), (()()()), ((1)(1)), (()(2)), ((3)), (()()(1)), ((12)), (()(11)), ((1)(2)), (()()()()), ((4)), (()(1)(1)), ((111)), (()()(2)).
MAPLE
with(numtheory):
a:= n-> add(add(j[2], j=ifactors(pi(i[1]))[2])*i[2], i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Sep 07 2018
MATHEMATICA
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Total[PrimeOmega/@primeMS[n]], {n, 100}]
PROG
(PARI) a(n, f=factor(n))=sum(i=1, #f~, bigomega(primepi(f[i, 1]))*f[i, 2]) \\ Charles R Greathouse IV, Nov 10 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 03 2018
STATUS
approved
A049076 Number of steps in the prime index chain for the n-th prime. +30
64
1, 2, 3, 1, 4, 1, 2, 1, 1, 1, 5, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let p(k) = k-th prime, let S(p) = S(p(k)) = k, the subscript of p; a(n) = order of primeness of p(n) = 1+m where m is largest number such that S(S(..S(p(n))...)) with m S's is a prime.
The record holders correspond to A007097.
LINKS
N. Fernandez, An order of primeness [cached copy, included with permission of the author]
FORMULA
Let b(n) = 0 if n is nonprime, otherwise b(n) = k where n is the k-th prime. Then a(n) is the number of times you can apply b to the n-th prime before you hit a nonprime.
a(n) = 1 + A078442(n). - R. J. Mathar, Jul 07 2012
a(n) = A078442(A000040(n)). - Alois P. Heinz, Mar 16 2020
EXAMPLE
11 is 5th prime, so S(11)=5, 5 is 3rd prime, so S(S(11))=3, 3 is 2nd prime, so S(S(S(11)))=2, 2 is first prime, so S(S(S(S(11))))=1, not a prime. Thus a(5)=4.
Alternatively, a(5) = 4: the 5th prime is 11 and its prime index chain is 11->5->3->2->1->0. a(6) = 1: the 6th prime is 13 and its prime index chain is 13->6->0.
MAPLE
A049076 := proc(n)
if not isprime(n) then
1 ;
else
1+procname(numtheory[pi](n)) ;
end if;
end proc:
seq(A049076(n), n=1..30) ; # R. J. Mathar, Jan 28 2014
MATHEMATICA
A049076 f[n_] := Length[ NestWhileList[ PrimePi, n, PrimeQ]]; Table[ f[n], {n, 105}] (* Robert G. Wilson v, Mar 11 2004 *)
Table[Length[NestWhileList[PrimePi[#]&, Prime[n], PrimeQ[#]&]]-1, {n, 110}] (* Harvey P. Dale, May 07 2018 *)
PROG
(PARI) apply(p->my(s=1); while(isprime(p=primepi(p)), s++); s, primes(100)) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a049076 = (+ 1) . a078442 -- Reinhard Zumkeller, Jul 14 2013
CROSSREFS
KEYWORD
nice,nonn,easy
AUTHOR
EXTENSIONS
Additional comments from Gabriel Cunningham (gcasey(AT)mit.edu), Apr 12 2003
STATUS
approved
A006842 Triangle read by rows: row n gives numerators of Farey series of order n.
(Formerly M0041)
+30
51
0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 1, 3, 2, 3, 4, 1, 0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 4, 5, 1, 0, 1, 1, 1, 1, 2, 1, 2, 3, 1, 4, 3, 2, 5, 3, 4, 5, 6, 1, 0, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 5, 6, 7, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 4, 1, 5, 4, 3, 5, 2, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,9
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964
J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 152.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923. See Vol. 1.
Guthery, Scott B. A motif of mathematics. Docent Press, 2011.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 23.
W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
A. O. Matveev, Farey Sequences, De Gruyter, 2017.
I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 141.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Maxim Bruckheimer and Abraham Arcavi, Farey series and Pick’s area theorem, The Mathematical Intelligencer, 17.4 (1995): 64-67.
Cristian Cobeli and Alexandru Zaharescu, The Haros-Farey sequence at two hundred years, Acta Univ. Apulensis Math. Inform 5 (2003): 1-38.
Andrey O. Matveev, Neighboring Fractions in Farey Subsequences, arXiv:0801.1981 [math.NT], 2008-2010.
Eric Weisstein's World of Mathematics, Farey Sequence.
EXAMPLE
0/1, 1/1;
0/1, 1/2, 1/1;
0/1, 1/3, 1/2, 2/3, 1/1;
0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1;
0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1/1;
MAPLE
Farey := proc(n) sort(convert(`union`({0}, {seq(seq(m/k, m=1..k), k=1..n)}), list)) end: seq(numer(Farey(i)), i=1..5); # Peter Luschny, Apr 28 2009
MATHEMATICA
Farey[n_] := Union[ Flatten[ Join[{0}, Table[a/b, {b, n}, {a, b}]]]]; Flatten[ Table[ Numerator[ Farey[n]], {n, 0, 9}]] (* Robert G. Wilson v, Apr 08 2004 *)
Table[FareySequence[n] // Numerator, {n, 1, 9}] // Flatten (* Jean-François Alcover, Sep 25 2018 *)
PROG
(PARI) row(n) = {vf = [0]; for (k=1, n, for (m=1, k, vf = concat(vf, m/k); ); ); vf = vecsort(Set(vf)); for (i=1, #vf, print1(numerator(vf[i]), ", ")); } \\ Michel Marcus, Jun 27 2014
CROSSREFS
Row n has A005728(n) terms. - Michel Marcus, Jun 27 2014
Cf. A006843 (denominators), A049455, A049456, A007305, A007306. Also A177405/A177407.
KEYWORD
nonn,nice,frac,tabf
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, Apr 08 2004
STATUS
approved
A286001 A table of partitions into consecutive parts (see Comments lines for definition). +30
50
1, 2, 3, 1, 4, 2, 5, 2, 6, 3, 1, 7, 3, 2, 8, 4, 3, 9, 4, 2, 10, 5, 3, 1, 11, 5, 4, 2, 12, 6, 3, 3, 13, 6, 4, 4, 14, 7, 5, 2, 15, 7, 4, 3, 1, 16, 8, 5, 4, 2, 17, 8, 6, 5, 3, 18, 9, 5, 3, 4, 19, 9, 6, 4, 5, 20, 10, 7, 5, 2, 21, 10, 6, 6, 3, 1, 22, 11, 7, 4, 4, 2, 23, 11, 8, 5, 5, 3, 24, 12, 7, 6, 6, 4, 25, 12, 8, 7, 3, 5 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is a triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists successive blocks of k consecutive terms, where the m-th block starts with m, m>=1, and the first element of column k is in row k*(k+1)/2.
The partitions of n into consecutive parts are represented from the row n up to row A288529(n) as maximum, but in increasing order, exclusively in the columns where the blocks begin.
More precisely, the partition of n into exactly k consecutive parts (if such partition exists) is represented in the column k from the row n up to row n + k - 1 (see examples).
A288772(n) is the minimum number of rows that are required to represent in this table the partitions of all positive integers <= n into consecutive parts.
A288773(n) is the largest of all positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
A288774(n) is the largest positive integers whose partitions into consecutive parts can be totally represented in the first n rows of this table.
For a theorem related to this table see A286000.
LINKS
EXAMPLE
Triangle begins:
1;
2;
3, 1;
4, 2;
5, 2;
6, 3, 1;
7, 3, 2;
8, 4, 3;
9, 4, 2;
10, 5, 3, 1;
11, 5, 4, 2;
12, 6, 3, 3;
13, 6, 4, 4;
14, 7, 5, 2;
15, 7, 4, 3, 1;
16, 8, 5, 4, 2;
17, 8, 6, 5, 3;
18, 9, 5, 3, 4;
19, 9, 6, 4, 5;
20, 10, 7, 5, 2;
21, 10, 6, 6, 3, 1;
22, 11, 7, 4, 4, 2;
23, 11, 8, 5, 5, 3;
24, 12, 7, 6, 6, 4;
25, 12, 8, 7, 3, 5;
26, 13, 9, 5, 4, 6;
27, 13, 8, 6, 5, 2;
28, 14, 9, 7, 6, 3, 1;
...
Figures A..G show the location (in the columns of the table) of the partitions of n = 1..7 (respectively) into consecutive parts:
. ------------------------------------------------------------------------
Fig: A B C D E F G
. ------------------------------------------------------------------------
. n: 1 2 3 4 5 6 7
Row ------------------------------------------------------------------------
1 | [1];| 1; | 1; | 1; | 1; | 1; | 1; |
2 | | [2];| 2; | 2; | 2; | 2; | 2; |
3 | | | [3],[1];| 3, 1;| 3, 1; | 3, 1; | 3, 1; |
4 | | | 4 ,[2];| [4], 2;| 4, 2; | 4, 2; | 4, 2; |
5 | | | | | [5],[2]; | 5, 2; | 5, 2; |
6 | | | | | 6, [3], 3;| [6], 3, [1];| 6, 3, 1;|
7 | | | | | | 7, 3, [2];| [7],[3], 2;|
8 | | | | | | 8, 4, [3];| 8, [4], 3;|
. ------------------------------------------------------------------------
Figure F: for n = 6 the partitions of 6 into consecutive parts (but with the parts in increasing order) are [6] and [1, 2, 3]. These partitions have 1 and 3 consecutive parts respectively. On the other hand we can find the mentioned partitions in the columns 1 and 3 of this table, starting at the row 6.
.
Figures H..K show the location (in the columns of the table) of the partitions of 8..11 (respectively) into consecutive parts:
. --------------------------------------------------------------------
Fig: H I J K
. --------------------------------------------------------------------
. n: 8 9 10 11
Row --------------------------------------------------------------------
1 | 1; | 1; | 1; | 1; |
1 | 2; | 2; | 2; | 2; |
3 | 3, 1; | 3, 1; | 3, 1; | 3, 1; |
4 | 4, 2; | 4, 2; | 4, 2; | 4, 2; |
5 | 5, 2; | 5, 2; | 5, 2; | 5, 2; |
6 | 6, 3, 3;| 6, 3, 1; | 6, 3, 1; | 6, 3, 1; |
7 | 7, 3, 2;| 7, 3, 2; | 7, 3, 2; | 7, 3, 2; |
8 | [8], 4, 1;| 8, 4, 3; | 8, 4, 3; | 8, 4, 3; |
9 | | [9],[4],[2]; | 9, 4, 2; | 9, 4, 2; |
10 | | 10, [5],[3], 1;| [10], 5, 3, [1];| 10, 5, 3, 1;|
11 | | 11, 5, [4], 2;| 11, 5, 4, [2];| [11],[5], 4, 2;|
12 | | | 12, 6, 3, [3];| 12, [6], 3, 3;|
13 | | | 13, 6, 4, [4];| 13, 6, 4, 4;|
. --------------------------------------------------------------------
Figure J: For n = 10 the partitions of 10 into consecutive parts (but with the parts in increasing order) are [10] and [1, 2, 3, 4]. These partitions have 1 and 4 consecutive parts respectively. On the other hand, we can find the mentioned partitions in the columns 1 and 4 of this table, starting at the row 10.
.
Illustration of initial terms arranged into the diagram of the triangle A237591:
. _
. _|1|
. _|2 _|
. _|3 |1|
. _|4 _|2|
. _|5 |2 _|
. _|6 _|3|1|
. _|7 |3 |2|
. _|8 _|4 _|3|
. _|9 |4 |2 _|
. _|10 _|5 |3|1|
. _|11 |5 _|4|2|
. _|12 _|6 |3 |3|
. _|13 |6 |4 _|4|
. _|14 _|7 _|5|2 _|
. _|15 |7 |4 |3|1|
. _|16 _|8 |5 |4|2|
. _|17 |8 _|6 _|5|3|
. _|18 _|9 |5 |3 |4|
. _|19 |9 |6 |4 _|5|
. _|20 _|10 _|7 |5|2 _|
. _|21 |10 |6 _|6|3|1|
. _|22 _|11 |7 |4 |4|2|
. _|23 |11 _|8 |5 |5|3|
. _|24 _|12 |7 |6 _|6|4|
. _|25 |12 |8 _|7|3 |5|
. _|26 _|13 _|9 |5 |4 _|6|
. _|27 |13 |8 |6 |5|2 _|
. |28 |14 |9 |7 |6|3|1|
...
The number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of partitions of n into consecutive parts.
.
From Omar E. Pol, Dec 15 2020: (Start)
The connection (described step by step) between the triangle of A299765 and the above geometric diagram is as follows:
.
[1]; [1];
[2]; [2];
[3], [2, 1]; [3], [2, 1];
[4]; [4];
[5], [3, 2]; [5], [3, 2];
[6], [3, 2, 1]; [6], [3, 2, 1];
[7], [4, 3]; [7], [4, 3];
[8]; [8];
[9], [5, 4], [4, 3, 2]; [9], [5, 4], [4, 3, 2];
.
Figure 1. Figure 2.
.
We start with the irregular Then we write the same triangle
triangle of A299765 in which but ordered in columns where the
row n lists the partitions column k lists the partitions of
of n into consecutive parts. n into k consecutive parts.
.
. _ _
1| |1
_ _
2| |2
_ _ _ _ _
3| 2,1| |3 |1
_ _ |2
4| |4
_ _ _ _ _
5| 3,2| |5 |2
_ _ _ _ _ |3 _
6| 3,2,1| |6 |1
_ _ _ _ _ |2
7| 4,3| |7 |3 |3
_ _ |4
8| |8
_ _ _ _ _ _ _ _ _
9| 5,4| 4,3,2| |9 |4 |2
|5 |3
|4
.
Figure 3. Figure 4.
.
Then we draw to the right of Then we rotate each sub-diagram
each partition a vertical 90 degrees counterclockwise.
toothpick and above each part Every horizontal toothpick represents
we draw a horizontal toothpick. the existence of that partition.
. The number of vertical toothpicks
. equals the number of parts.
.
. _ _
_|1 _|1
_|2 _ _|2 _
_|3 |1 _|3 |1
_|4 _|2 _|4 _|2
_|5 |2 _ _|5 |2 _
_|6 _|3|1 _|6 _|3|1
_|7 |3 |2 _|7 |3 |2
_|8 _|4 _|3 _|8 _|4 _|3
|9 |4 |2 |9 |4 |2
|5 |3
|4
.
Figure 5. Figure 6.
.
Then we join the sub-diagrams Finally we erase the parts that
forming staircases (or zig-zag are beyond a certain level (in
paths) that represent the this case beyond the 9th level)
partitions that have the same to make the diagram more standard.
number of parts.
.
The numbers in the k-th staircase (from left to right) are the elements of the k-th column of the triangular array.
Note that this diagram is essentially the same diagram used to represent the triangles A237048, A235791, A237591, and other related sequences such as A001227, A060831 and A204217.
There is an infinite family of this kind of triangles, which are related to polygonal numbers and partitions into consecutive parts that differ by d. For more information see the theorems in A285914 and A303300.
Note that if we take two images of the diagram mirroring each other, with the y-axis in the middle of them, then a new diagram is formed, which is symmetric and represents the sequence A237593 as an isosceles triangle. Then if we fold each level (or row) of that isosceles triangle we essentially obtain the structure of the pyramid described in A245092 whose terraces at the n-th level have a total area equal to sigma(n) = A000203(n). (End)
CROSSREFS
Another version of A286000.
Tables of the same family where the consecutive parts differ by d are A010766 (d=0), this sequence (d=1), A332266 (d=2), A334945 (d=3), A334618(d=4).
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Apr 30 2017
STATUS
approved
A336811 Irregular triangle read by rows T(n,k) in which the length of row n equals the partition number A000041(n-1) and every column k gives the positive integers A000027, with n >= 1 and k >= 1. +30
50
1, 2, 3, 1, 4, 2, 1, 5, 3, 2, 1, 1, 6, 4, 3, 2, 2, 1, 1, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 10, 8, 7, 6, 6, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In other words: row n lists A028310(n-1) blocks where the m-th block consists of A187219(m) copies of n - m + [m=1], with n >= 1 and m >= 1, where [] is the Iverson bracket. [Corrected by Paolo Xausa, Feb 10 2023]
All divisors of all terms in row n are also all parts in the last section of the set of partitions of n.
Thus all divisors of all terms of the first n rows of triangle are also all parts of all partitions of n. In other words: all divisors of the first A000070(n-1) terms of the sequence are also all parts of all partitions of n. - Omar E. Pol, Jun 19 2021
From Omar E. Pol, Jul 31 2021: (Start)
The number of k's in row n is equal to A002865(n-k), 1 <= k <= n.
The number of terms >= k in row n is equal to A000041(n-k), 1 <= k <= n.
The number of k's in the first n rows (or in the first A000070(n-1) terms of the sequence) is equal to A000041(n-k), 1 <= k <= n.
The number of terms >= k in the first n rows (or in the first A000070(n-1) terms of the sequence) is equal to A000070(n-k), 1 <= k <= n.
First n rows of triangle (or first A000070(n-1) terms of the sequence) in nonincreasing order give the n-th row of A176206. (End)
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11732 (rows 1..27 of triangle, flattened).
EXAMPLE
Triangle begins:
1;
2;
3, 1;
4, 2, 1;
5, 3, 2, 1, 1;
6, 4, 3, 2, 2, 1, 1;
7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1;
8, 6, 5, 4, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1;
9, 7, 6, 5, 5, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
...
For n = 6, by definition the length of row 6 is A000041(6-1) = A000041(5) = 7, so the row 6 of triangle has seven terms. Since every column lists the positive integers A000027 so the row 6 is [6, 4, 3, 2, 2, 1, 1].
Then we have that the divisors of the numbers of the 6th row are:
.
6th row of the triangle ----------> 6 4 3 2 2 1 1
3 2 1 1 1
2 1
1
.
There are seven 1's, four 2's, two 3's, one 4 and one 6.
In total there are 7 + 4 + 2 + 1 + 1 = 15 divisors.
On the other hand the last section of the set of the partitions of 6 can be represented in several ways, five of them as shown below:
._ _ _ _ _ _
|_ _ _ | 6 6 6 6
|_ _ _|_ | 3 3 3 3 3 3 3 3
|_ _ | | 4 2 4 2 4 2 4 2
|_ _|_ _|_ | 2 2 2 2 2 2 2 2 2 2 2 2
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
| | 1 1 1 1
|_| 1 1 1 1
.
Figure 1. Figure 2. Figure 3. Figure 4. Figure 5.
.
In every figure there are seven 1's, four 2's, two 3's, one 4 and one 6, as shown also the 6th row of A182703.
In total there are 7 + 4 + 2 + 1 + 1 = A138137(6) = 15 parts in every figure.
Figure 5 is an arrangement that shows the correspondence between divisors and parts since the columns give the divisors of the terms of 6th row of triangle.
Finally we can see that all divisors of all numbers in the 6th row of the triangle are the same positive integers as all parts in the last section of the set of the partitions of 6.
Example edited by Omar E. Pol, Aug 10 2021
MATHEMATICA
A336811[row_]:=Flatten[Table[ConstantArray[row-m, PartitionsP[m]-PartitionsP[m-1]], {m, 0, row-1}]];
Array[A336811, 10] (* Generates 10 rows *) (* Paolo Xausa, Feb 10 2023 *)
PROG
(PARI) f(n) = numbpart(n-1);
T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (n)); my(s=0); while (k <= f(n-1), s++; n--; ); 1+s; }
tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n, k), ", "); ); print; ); } \\ Michel Marcus, Jan 13 2021
CROSSREFS
Row sums give A000070.
Row n has length A000041(n-1).
Every column k gives A000027.
Companion of A176206.
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 20 2020
STATUS
approved
A194832 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r= -tau = -(1+sqrt(5))/2. +30
47
1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 5, 3, 6, 1, 4, 2, 5, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 1, 9, 4, 7, 2, 5, 8, 3, 6, 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 8, 3, 11, 6, 1, 9, 4, 12, 7, 2, 10, 5, 13, 8, 3, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Every irrational number r generates a triangular array in the manner exemplified here. Taken as a sequence, the numbers comprise a fractal sequence f which induces a second (rectangular) array whose n-th row gives the positions of n in f. Denote these by Array1 and Array2. As proved elsewhere, Array2 is an interspersion. (Every row intersperses every other row except for initial terms.) Taken as a sequence, Array2 is a permutation, Perm1, of the positive integers; let Perm2 denote its inverse permutation.
Examples:
r................Array1....Array2....Perm2
tau..............A054065...A054069...A054068
-tau.............A194832...A194833...A194834
sqrt(2)..........A054073...A054077...A054076
-sqrt(2).........A194835...A194836...A194837
sqrt(3)..........A194838...A194839...A194840
-sqrt(3).........A194841...A194842...A194843
sqrt(5)..........A194844...A194845...A194846
-sqrt(5).........A194856...A194857...A194858
sqrt(6)..........A194871...A194872...A194873
-sqrt(6).........A194874...A194875...A194876
sqrt(8)..........A194877...A194878...A194879
-sqrt(8).........A194896...A194897...A194898
sqrt(12).........A194899...A194900...A194901
-sqrt(12)........A194902...A194903...A194904
e................A194859...A194860...A194861
-e...............A194865...A194866...A194864
pi...............A194905...A194906...A194907
-pi..............A194908...A194909...A194910
(1+sqrt(3))/2....A194862...A194863...A194867
-(1+sqrt(3))/2...A194868...A194869...A194870
2^(1/3)..........A194911...A194912...A194913
REFERENCES
C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997), 157-168.
LINKS
Wikipedia, Fractal sequence
EXAMPLE
Fractional parts: {-r}=-0.61..;{-2r}=-0.23..;{-3r}=-0.85..;{-4r}=-0.47..; thus, row 4 is (3,1,4,2) because {-3r} < {-r} < {-4r} < {-2r}. [corrected by Michel Dekking, Nov 30 2020]
First nine rows:
1
1 2
3 1 2
3 1 4 2
3 1 4 2 5
3 6 1 4 2 5
3 6 1 4 7 2 5
8 3 6 1 4 7 2 5
8 3 6 1 9 4 7 2 5
MATHEMATICA
r = -GoldenRatio;
t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]]
(* A194832 *)
TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]]
row[n_] := Position[f, n];
u = TableForm[Table[row[n], {n, 1, 20}]]
g[n_, k_] := Part[row[n], k];
p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194833 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194834 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Sep 03 2011
EXTENSIONS
Table in overview corrected by Georg Fischer, Jul 30 2023
STATUS
approved
A338912 Lesser prime index of the n-th semiprime. +30
43
1, 1, 2, 1, 1, 2, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 4, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 5, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 6, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
A semiprime is a product of any two prime numbers. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
FORMULA
a(n) = A000720(A084126(n)).
EXAMPLE
The semiprimes are:
2*2, 2*3, 3*3, 2*5, 2*7, 3*5, 3*7, 2*11, 5*5, 2*13, ...
so the lesser prime factors are:
2, 2, 3, 2, 2, 3, 3, 2, 5, 2, ...
with indices:
1, 1, 2, 1, 1, 2, 2, 1, 3, 1, ...
MATHEMATICA
Table[Min[PrimePi/@First/@FactorInteger[n]], {n, Select[Range[100], PrimeOmega[#]==2&]}]
CROSSREFS
A084126 is the lesser prime factor (not index).
A084127 is the greater factor, with index A338913.
A115392 lists positions of ones.
A128301 lists positions of first appearances of each positive integer.
A270650 is the squarefree case, with greater part A270652.
A338898 has this as first column.
A001221 counts distinct prime indices.
A001222 counts prime indices.
A001358 lists semiprimes, with odds A046315 and evens A100484.
A006881 lists squarefree semiprimes, with odds A046388 and evens A100484.
A087794/A176504/A176506 are product/sum/difference of semiprime indices.
A338910/A338911 list products of pairs of odd/even-indexed primes.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 20 2020
STATUS
approved
A270650 Min(i, j), where p(i)*p(j) is the n-th term of A006881. +30
42
1, 1, 1, 2, 2, 1, 1, 2, 1, 3, 1, 2, 1, 2, 3, 2, 1, 1, 3, 2, 1, 4, 1, 3, 1, 2, 4, 2, 1, 3, 1, 2, 3, 1, 4, 1, 2, 2, 4, 1, 2, 1, 5, 3, 1, 3, 1, 2, 4, 1, 2, 1, 2, 3, 5, 1, 2, 1, 4, 3, 1, 5, 2, 1, 3, 4, 1, 2, 6, 1, 3, 2, 6, 2, 5, 1, 4, 1, 3, 2, 1, 1, 4, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
EXAMPLE
A006881 = (6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, ... ), the increasing sequence of all products of distinct primes. The first 4 factorizations are 2*3, 2*5, 2*7, 3*5, so that (a(1), a(2), a(3), a(4)) = (1,1,1,2).
MATHEMATICA
mx = 350; t = Sort@Flatten@Table[Prime[n]*Prime[m], {n, Log[2, mx/3]}, {m, n + 1, PrimePi[mx/Prime[n]]}]; (* A006881, Robert G. Wilson v, Feb 07 2012 *)
u = Table[FactorInteger[t[[k]]][[1]], {k, 1, Length[t]}];
u1 = Table[u[[k]][[1]], {k, 1, Length[t]}] (* A096916 *)
PrimePi[u1] (* A270650 *)
v = Table[FactorInteger[t[[k]]][[2]], {k, 1, Length[t]}];
v1 = Table[v[[k]][[1]], {k, 1, Length[t]}] (* A070647 *)
PrimePi[v1] (* A270652 *)
d = v1 - u1 (* A176881 *)
Map[PrimePi[FactorInteger[#][[1, 1]]] &, Select[Range@ 240, And[SquareFreeQ@ #, PrimeOmega@ # == 2] &]] (* Michael De Vlieger, Apr 25 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 25 2016
STATUS
approved
A133299 Fractal sequence of the Stolarsky array, A035506. +30
40
1, 1, 1, 2, 1, 2, 3, 1, 4, 2, 3, 5, 1, 6, 4, 2, 7, 3, 5, 8, 1, 9, 6, 4, 10, 2, 11, 7, 3, 12, 5, 8, 13, 1, 14, 9, 6, 15, 4, 10, 16, 2, 17, 11, 7, 18, 3, 19, 12, 5, 20, 8, 13, 21, 1, 22, 14, 9, 23, 6, 15, 24, 4, 25, 10, 16, 26, 2, 27, 17, 11, 28, 7, 18, 29, 3, 30, 19, 12, 31, 5, 32, 20, 8, 33 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
REFERENCES
D. R. Morrison, A Stolarsky Array of Wythoff Pairs, A Collection of Manuscripts Related to the Fibonacci Sequence, edited by V. E. Hoggatt Jr., M. Bicknell-Johnson, published by The Fibonacci Association, (1980) pp. 134-136. - Casey Mongoven, Sep 10 2011
LINKS
Eric Weisstein's World of Mathematics, Stolarsky Array
FORMULA
A035506(a(n),k)=n for some k>=1. - R. J. Mathar, Nov 21 2007
a(n) = 1+A098861(n). - Casey Mongoven, Sep 10 2011
EXAMPLE
As a fractal sequence, if each first occurrence of each n is deleted, then the resulting sequence is the same as the original. For the fractal sequence of the Wythoff array, see A003603.
MAPLE
A035506 := proc(r, c) local tau, a, b, d, i ; tau := (1+sqrt(5))/2 ; a := floor( r*(1+tau)-tau/2) ; b := round(a*tau) ; if c = 1 then RETURN(a) ; else if c =2 then RETURN(b) ; else for i from 1 to c-2 do d := a+b ; a := b; b := d ; od: RETURN(d) ; fi ; fi ; end:
A133299 := proc(n) local row, col ; for row from 1 do for col from 1 do stola := A035506(row, col) ; if stola = n then RETURN(row) ; elif stola > n then break ; fi ; od: od: end:
seq(A133299(n), n=1..100) ; # R. J. Mathar, Nov 21 2007
MATHEMATICA
A035506[r_, c_] := Module[{tau = GoldenRatio, a, b, d, i}, a = Floor[r*(1 + tau) - tau/2]; b = Round[a*tau]; If[c == 1, Return[a], If[c == 2, Return[b], For[i = 1, i <= c - 2, i++, d = a + b; a = b; b = d]; Return[d]]]];
a[n_] := Module[{row, col}, For[row = 1, True, row++, For[col = 1, True, col++, stola = A035506[row, col] ; If[stola == n, Return[row], If[stola > n, Break[]]]]]];
Array[a, 100] (* Jean-François Alcover, Mar 22 2020, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gregg Whisler, Oct 17 2007
EXTENSIONS
Better definition from R. J. Mathar, Oct 22 2007
More terms from R. J. Mathar, Nov 21 2007
Definition now conforms to others; comment replaced - Clark Kimberling, Oct 29 2009
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 36

Search completed in 0.035 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 05:17 EDT 2024. Contains 373393 sequences. (Running on oeis4.)