Search: seq:1,4,9,16,25,35
|
| |
|
|
A004120
|
|
Expansion of (1 + x - x^5) / (1 - x)^3.
(Formerly M3354)
|
|
+30
10
|
|
|
|
1, 4, 9, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
0,2
|
|
|
REFERENCES
|
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
|
LINKS
|
|
|
|
FORMULA
|
|
|
|
MAPLE
|
|
|
|
MATHEMATICA
|
CoefficientList[Series[(1+x-x^5)/(1-x)^3, {x, 0, 50}], x] (* or *) Join[ {1, 4, 9}, LinearRecurrence[{3, -3, 1}, {16, 25, 35}, 50]] (* Harvey P. Dale, Oct 11 2011 *)
|
|
|
PROG
|
|
|
|
KEYWORD
|
nonn,easy
|
|
|
AUTHOR
|
|
|
|
STATUS
|
approved
|
| |
|
|
| |
|
|
A331220
|
|
Positive numbers of the form u * v where the ternary representations of u and of v have the same number of digits d for d = 0..2.
|
|
+30
5
|
|
|
|
1, 4, 9, 16, 25, 35, 36, 49, 64, 81, 100, 120, 121, 144, 165, 169, 196, 209, 224, 225, 231, 256, 285, 289, 308, 315, 324, 352, 361, 391, 399, 400, 425, 441, 480, 484, 529, 575, 576, 625, 676, 729, 784, 840, 841, 900, 957, 961, 1008, 1024, 1080, 1088, 1089
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
1,2
|
|
|
COMMENTS
|
In other words, the terms of this sequence are squares or the products of two ternary anagrams.
Leading zeros are ignored.
If m belongs to the sequence, then 9*m also belongs to the sequence.
|
|
|
LINKS
|
|
|
|
EXAMPLE
|
The ternary representations of 5 and 7 are "12" and "21", respectively.
So 5 and 7 are ternary anagrams, and 35 = 7*5 belongs to the sequence.
|
|
|
PROG
|
(PARI) is(n, base=3) = fordiv (n, d, if (vecsort(digits(d, base))==vecsort(digits(n/d, base)), return (1))); return (0)
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
nonn,base
|
|
|
AUTHOR
|
|
|
|
STATUS
|
approved
|
| |
|
|
| |
|
|
A052118
|
|
Number of nonnegative integer pairs (i,j) with binomial(i+r,r) + binomial(j+r,r) <= binomial(n+r,r), r=5.
|
|
+30
3
|
|
|
|
0, 1, 4, 9, 16, 25, 35, 48, 63, 78, 97, 118, 139, 163, 190, 217, 248, 277, 312, 349, 384, 424, 465, 508, 553, 600, 649, 700, 752, 805, 864, 921, 980, 1045, 1106, 1175, 1241, 1310, 1383, 1456, 1529, 1610, 1687, 1770, 1850, 1937, 2024, 2113, 2204, 2295, 2390
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
0,3
|
|
|
LINKS
|
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
nonn
|
|
|
AUTHOR
|
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 21 2000
|
|
|
STATUS
|
approved
|
| |
|
|
| |
|
|
A180174
|
|
Triangle read by rows of the numbers C(n,k) of k-subsets of a quadratically populated n-multiset M.
|
|
+30
1
|
|
|
|
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 5, 7, 9, 10, 10, 10, 10, 10, 9, 7, 5, 3, 1, 1, 4, 9, 16, 25, 35, 45, 55, 65, 75, 84, 91, 96, 99, 100, 100, 100, 99, 96, 91, 84, 75, 65, 55, 45, 35, 25, 16, 9, 4, 1, 1, 5, 14, 30, 55, 90, 135, 190, 255, 330, 414, 505, 601, 700, 800, 900, 1000, 1099
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
|
OFFSET
|
0,5
|
|
|
COMMENTS
|
The multiplicity m(i) of the i-th element with 1 <= i <= n is m(i)=i^2.
Thus M=[1,2,2,2,2,...,i^2 x i,...,n^2 x n].
Column for k=2 is equal to AA000096.
Column for k=3 is equal to AA005581.
Column for k=4 is equal to AA005582.
The number of coefficients C(n,k) for given n is equal to A056520.
|
|
|
LINKS
|
|
|
|
FORMULA
|
C(0,0) = 0.
C(n,k) = sum_{j=(k-LS+1)}^{k} C(n-1,j).
for n > 0 and k=1,...,LR with LS = n^2+1 and LR = n*(n+1)*(2*n+1)/6.
C(n,k) = C(n,LR-k).
|
|
|
EXAMPLE
|
For n=4 one has M=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4].
For k=7 we have 55 subsets from M:
[1, 2, 2, 3, 3, 4, 4], [1, 2, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 4, 4],
[1, 2, 2, 3, 4, 4, 4], [1, 2, 2, 3, 3, 3, 4], [1, 2, 2, 2, 3, 4, 4],
[1, 2, 2, 2, 3, 3, 4], [2, 2, 3, 3, 4, 4, 4], [2, 2, 3, 3, 3, 4, 4],
[2, 2, 2, 3, 3, 4, 4], [1, 2, 2, 2, 3, 3, 3], [1, 2, 2, 2, 4, 4, 4],
[1, 3, 3, 3, 4, 4, 4], [2, 3, 3, 3, 4, 4, 4], [2, 2, 2, 3, 4, 4, 4],
[2, 2, 2, 3, 3, 3, 4], [1, 2, 3, 4, 4, 4, 4], [1, 2, 3, 3, 3, 3, 4],
[1, 2, 2, 2, 2, 3, 4], [1, 2, 2, 3, 3, 3, 3], [1, 2, 2, 2, 2, 3, 3],
[1, 2, 2, 4, 4, 4, 4], [1, 2, 2, 2, 2, 4, 4], [1, 3, 3, 4, 4, 4, 4],
[1, 3, 3, 3, 3, 4, 4], [2, 3, 3, 4, 4, 4, 4], [2, 3, 3, 3, 3, 4, 4],
[2, 2, 3, 4, 4, 4, 4], [2, 2, 3, 3, 3, 3, 4], [2, 2, 2, 2, 3, 4, 4],
[2, 2, 2, 2, 3, 3, 4], [2, 2, 2, 3, 3, 3, 3], [2, 2, 2, 2, 3, 3, 3],
[2, 2, 2, 4, 4, 4, 4], [2, 2, 2, 2, 4, 4, 4], [3, 3, 3, 4, 4, 4, 4],
[3, 3, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 3, 3], [1, 2, 4, 4, 4, 4, 4],
[1, 3, 4, 4, 4, 4, 4], [1, 3, 3, 3, 3, 3, 4], [2, 3, 4, 4, 4, 4, 4],
[2, 3, 3, 3, 3, 3, 4], [2, 2, 3, 3, 3, 3, 3], [2, 2, 4, 4, 4, 4, 4],
[3, 3, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 4, 4], [1, 3, 3, 3, 3, 3, 3],
[1, 4, 4, 4, 4, 4, 4], [2, 3, 3, 3, 3, 3, 3], [2, 4, 4, 4, 4, 4, 4],
[3, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 4], [3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4].
|
|
|
MAPLE
|
with(combinat)
kend := 4;
Liste := NULL;
for k from 0 to kend do
Liste := Liste, `$`(k, k^2)
end do;
Liste := [Liste];
for k from 0 to 2^(kend+1)-1 do
Teilergebnis[k] := choose(Liste, k)
end do;
seq(nops(Teilergebnis[k]), k = 0 .. 2^(kend+1)-1)
' Excel VBA
Dim n As Long, nend As Long, k As Long, kk As Long, length_row As Long, length_sum As Long
Dim ATable(10, -1000 To 1000) As Double, Summe As Double
Dim offset_row As Integer, offset_column As Integer
Worksheets("Tabelle2").Select
Cells.Select
Selection.ClearContents
Range("A1").Select
offset_row = 1
offset_column = 1
nend = 7
ATable(0, 0) = 1
Cells(0 + offset_row, 0 + offset_column) = 1
For n = 1 To nend
length_row = n * (n + 1) * (2 * n + 1) / 6
length_sum = n ^ 2 + 1
For k = 0 To length_row / 2
Summe = 0
For kk = k - length_sum + 1 To k
Summe = Summe + ATable(n - 1, kk)
Next kk
ATable(n, k) = Summe
Cells(n + offset_row, k + offset_column) = ATable(n, k)
ATable(n, length_row - k) = Summe
Cells(n + offset_row, length_row - k + 0 + offset_column) = ATable(n, k)
Next k
Next n
End Sub
|
|
|
CROSSREFS
|
|
|
|
KEYWORD
|
nonn,tabf
|
|
|
AUTHOR
|
|
|
|
STATUS
|
approved
|
| |
|
Search completed in 0.008 seconds
|