The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,4,9,16,25,35
Displaying 1-4 of 4 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A004120 Expansion of (1 + x - x^5) / (1 - x)^3.
(Formerly M3354)
+30
10
1, 4, 9, 16, 25, 35, 46, 58, 71, 85, 100, 116, 133, 151, 170, 190, 211, 233, 256, 280, 305, 331, 358, 386, 415, 445, 476, 508, 541, 575, 610, 646, 683, 721, 760, 800, 841, 883, 926, 970, 1015, 1061, 1108, 1156, 1205 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. R. Breach, Solution to Problem 68-16, SIAM Rev. 12 (1970), 294-297.
Philippe Flajolet, Balls and urns, etc. A problem in submarine detection (solution to 68-16)
M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 109-111.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = n*(n + 11)/2 - 5, n>=3. - R. J. Mathar, Mar 15 2011
a(n) = A302537(n-1), n>=3. - R. J. Mathar, Apr 24 2024
MAPLE
A004120:=(-1-z+z**5)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
i=7; s=1; lst={s}; Do[s+=n+i; If[s>=0, AppendTo[lst, s]], {n, 0, 6!, 1}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 30 2008 *)
CoefficientList[Series[(1+x-x^5)/(1-x)^3, {x, 0, 50}], x] (* or *) Join[ {1, 4, 9}, LinearRecurrence[{3, -3, 1}, {16, 25, 35}, 50]] (* Harvey P. Dale, Oct 11 2011 *)
PROG
(Magma) [1, 4, 9], [n*(n+11)/2-5: n in [3..30]]; // Vincenzo Librandi, Oct 08 2011
(PARI) a(n)=if(n>2, (n^2+11*n)/2-5, (n+1)^2) \\ Charles R Greathouse IV, Sep 30 2015
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A331220 Positive numbers of the form u * v where the ternary representations of u and of v have the same number of digits d for d = 0..2. +30
5
1, 4, 9, 16, 25, 35, 36, 49, 64, 81, 100, 120, 121, 144, 165, 169, 196, 209, 224, 225, 231, 256, 285, 289, 308, 315, 324, 352, 361, 391, 399, 400, 425, 441, 480, 484, 529, 575, 576, 625, 676, 729, 784, 840, 841, 900, 957, 961, 1008, 1024, 1080, 1088, 1089 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In other words, the terms of this sequence are squares or the products of two ternary anagrams.
Leading zeros are ignored.
If m belongs to the sequence, then 9*m also belongs to the sequence.
LINKS
EXAMPLE
The ternary representations of 5 and 7 are "12" and "21", respectively.
So 5 and 7 are ternary anagrams, and 35 = 7*5 belongs to the sequence.
PROG
(PARI) is(n, base=3) = fordiv (n, d, if (vecsort(digits(d, base))==vecsort(digits(n/d, base)), return (1))); return (0)
CROSSREFS
Cf. A331219 (binary analog), A331221 (decimal analog), A331268, A331269.
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 12 2020
STATUS
approved
A052118 Number of nonnegative integer pairs (i,j) with binomial(i+r,r) + binomial(j+r,r) <= binomial(n+r,r), r=5. +30
3
0, 1, 4, 9, 16, 25, 35, 48, 63, 78, 97, 118, 139, 163, 190, 217, 248, 277, 312, 349, 384, 424, 465, 508, 553, 600, 649, 700, 752, 805, 864, 921, 980, 1045, 1106, 1175, 1241, 1310, 1383, 1456, 1529, 1610, 1687, 1770, 1850, 1937, 2024, 2113, 2204, 2295, 2390 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Jan 21 2000
STATUS
approved
A180174 Triangle read by rows of the numbers C(n,k) of k-subsets of a quadratically populated n-multiset M. +30
1
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 3, 5, 7, 9, 10, 10, 10, 10, 10, 9, 7, 5, 3, 1, 1, 4, 9, 16, 25, 35, 45, 55, 65, 75, 84, 91, 96, 99, 100, 100, 100, 99, 96, 91, 84, 75, 65, 55, 45, 35, 25, 16, 9, 4, 1, 1, 5, 14, 30, 55, 90, 135, 190, 255, 330, 414, 505, 601, 700, 800, 900, 1000, 1099 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
The multiplicity m(i) of the i-th element with 1 <= i <= n is m(i)=i^2.
Thus M=[1,2,2,2,2,...,i^2 x i,...,n^2 x n].
Row sum is equal to A028361.
Column for k=2 is equal to AA000096.
Column for k=3 is equal to AA005581.
Column for k=4 is equal to AA005582.
The number of coefficients C(n,k) for given n is equal to A056520.
LINKS
FORMULA
C(0,0) = 0.
C(n,k) = sum_{j=(k-LS+1)}^{k} C(n-1,j).
for n > 0 and k=1,...,LR with LS = n^2+1 and LR = n*(n+1)*(2*n+1)/6.
C(n,k) = C(n,LR-k).
EXAMPLE
For n=4 one has M=[1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4].
For k=7 we have 55 subsets from M:
[1, 2, 2, 3, 3, 4, 4], [1, 2, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 4, 4],
[1, 2, 2, 3, 4, 4, 4], [1, 2, 2, 3, 3, 3, 4], [1, 2, 2, 2, 3, 4, 4],
[1, 2, 2, 2, 3, 3, 4], [2, 2, 3, 3, 4, 4, 4], [2, 2, 3, 3, 3, 4, 4],
[2, 2, 2, 3, 3, 4, 4], [1, 2, 2, 2, 3, 3, 3], [1, 2, 2, 2, 4, 4, 4],
[1, 3, 3, 3, 4, 4, 4], [2, 3, 3, 3, 4, 4, 4], [2, 2, 2, 3, 4, 4, 4],
[2, 2, 2, 3, 3, 3, 4], [1, 2, 3, 4, 4, 4, 4], [1, 2, 3, 3, 3, 3, 4],
[1, 2, 2, 2, 2, 3, 4], [1, 2, 2, 3, 3, 3, 3], [1, 2, 2, 2, 2, 3, 3],
[1, 2, 2, 4, 4, 4, 4], [1, 2, 2, 2, 2, 4, 4], [1, 3, 3, 4, 4, 4, 4],
[1, 3, 3, 3, 3, 4, 4], [2, 3, 3, 4, 4, 4, 4], [2, 3, 3, 3, 3, 4, 4],
[2, 2, 3, 4, 4, 4, 4], [2, 2, 3, 3, 3, 3, 4], [2, 2, 2, 2, 3, 4, 4],
[2, 2, 2, 2, 3, 3, 4], [2, 2, 2, 3, 3, 3, 3], [2, 2, 2, 2, 3, 3, 3],
[2, 2, 2, 4, 4, 4, 4], [2, 2, 2, 2, 4, 4, 4], [3, 3, 3, 4, 4, 4, 4],
[3, 3, 3, 3, 4, 4, 4], [1, 2, 3, 3, 3, 3, 3], [1, 2, 4, 4, 4, 4, 4],
[1, 3, 4, 4, 4, 4, 4], [1, 3, 3, 3, 3, 3, 4], [2, 3, 4, 4, 4, 4, 4],
[2, 3, 3, 3, 3, 3, 4], [2, 2, 3, 3, 3, 3, 3], [2, 2, 4, 4, 4, 4, 4],
[3, 3, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 4, 4], [1, 3, 3, 3, 3, 3, 3],
[1, 4, 4, 4, 4, 4, 4], [2, 3, 3, 3, 3, 3, 3], [2, 4, 4, 4, 4, 4, 4],
[3, 4, 4, 4, 4, 4, 4], [3, 3, 3, 3, 3, 3, 4], [3, 3, 3, 3, 3, 3, 3],
[4, 4, 4, 4, 4, 4, 4].
MAPLE
with(combinat)
kend := 4;
Liste := NULL;
for k from 0 to kend do
Liste := Liste, `$`(k, k^2)
end do;
Liste := [Liste];
for k from 0 to 2^(kend+1)-1 do
Teilergebnis[k] := choose(Liste, k)
end do;
seq(nops(Teilergebnis[k]), k = 0 .. 2^(kend+1)-1)
' Excel VBA
Sub A180174()
Dim n As Long, nend As Long, k As Long, kk As Long, length_row As Long, length_sum As Long
Dim ATable(10, -1000 To 1000) As Double, Summe As Double
Dim offset_row As Integer, offset_column As Integer
Worksheets("Tabelle2").Select
Cells.Select
Selection.ClearContents
Range("A1").Select
offset_row = 1
offset_column = 1
nend = 7
ATable(0, 0) = 1
Cells(0 + offset_row, 0 + offset_column) = 1
For n = 1 To nend
length_row = n * (n + 1) * (2 * n + 1) / 6
length_sum = n ^ 2 + 1
For k = 0 To length_row / 2
Summe = 0
For kk = k - length_sum + 1 To k
Summe = Summe + ATable(n - 1, kk)
Next kk
ATable(n, k) = Summe
Cells(n + offset_row, k + offset_column) = ATable(n, k)
ATable(n, length_row - k) = Summe
Cells(n + offset_row, length_row - k + 0 + offset_column) = ATable(n, k)
Next k
Next n
End Sub
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Thomas Wieder, Aug 15 2010
STATUS
approved
page 1

Search completed in 0.008 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 11:46 EDT 2024. Contains 372712 sequences. (Running on oeis4.)