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Preface 
In spite of the large number of publ ished mathemat ical tables, until the appear
ance of A Handbook of Integer Sequences (HIS) in 1973 there was no table of 
sequences of integers. Thus someone coming across the sequence 1, 1, 2, 5, 15, 
52, 203 , 877, 4140, . . . , for example, would have had difficulty in finding out 
that these are the Bel l numbers , that they have been extensively studied, and that 
they can be generated by expanding e^A in powers of x. The 1973 book remedied 
this situation to a certain extent, and the Encyclopedia of Integer Sequences is a 
greatly expanded version of that book. T h e main table now contains 5488 
sequences of integers (compared wi th 2372 in the first book) , col lected from all 
branches of mathemat ics and science. The sequences are arranged in numer ica l 
order, and for each one a brief descript ion and a reference are given. Figures inter
spersed throughout the table il lustrate the mos t impor tant sequences . T h e first part 
of the book describes how to use the table and gives me thods for analyzing 
unknown sequences . 

W h o will use this book? Anyone who has ever been confronted with a s trange 
sequence, whether in an intelligence test in high school, e.g., 

1, 11 , 2 1 , 1211, 111221, 312211 , 1 3 1 1 2 2 2 1 , . . . 

(guess!*), or in solving a mathematical problem, e.g., 

1, 1, 2, 5, 14, 42 , 132, 429 , 1430, 4 8 6 2 , . . . 

(the Catalan numbers) , or from a counting problem, e.g., 

1 , 1 , 2 , 4, 9, 20, 4 8 , 1 1 5 , 2 8 6 , 7 1 9 , . . . 

(the number of rooted trees with n nodes) , or in computer science, e.g., 

0, 1 , 3 , 5 , 9, 11 , 14, 17, 25 , 2 7 , . . . 

( the number of compar i sons needed to sort n e lements by list merg ing) , or in 
physics , e.g., 

1, 6, 30, 138, 606, 2 5 8 6 , . . . 

[For many more terms and the explanation, see the main table. 
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(susceptibility coefficients for the planar hexagonal lat t ice 2 ) , or in chemistry, e.g., 

1, 1, 4, 8, 22, 5 1 , 136, 335 , 8 7 1 , 2 2 1 7 , . . . 

(the number of alkyl derivatives of benzene with n = 6, 7, . . . carbon a toms) , or 
in electrical engineer ing, e.g., 

3,7 , 46 , 4436 , 1 3 4 2 8 1 2 1 6 , . . . 

( the n u m b e r of Boo lean functions of n variables) , will find this encyc loped ia 
useful. 

If you encounter an integer sequence at work or at play and you want to find 
out if anyone has ever c o m e across it before and, if so, how it is generated, then 
this is the book you need! 

In addit ion to identifying integer sequences , the Encyclopedia will serve as 
an index to the li terature for locating references on a part icular p rob lem and for 
quickly finding numbers like the number of part i t ions of 30, the 18th Catalan 
number , the expans ion of % to 60 dec imal p laces , or the n u m b e r of poss ib le 
chess games after 8 moves . It might also be useful to have around when the first 
s igna l s ar r ive f rom B e t e l g e u s e ( s equence M 5 3 1 8 , for e x a m p l e , w o u l d b e a 
friendly beginning) . 

Some quotat ions from letters will show the diversity and enthusiasm of read
ers of the 1973 book. We expect the new book will find even wider appl icat ions, 
and look forward to hear ing from readers w h o have used it successfully. 

"I recently had the occasion to look for a sequence in your book. It w a s n ' t 
there. I tried the sequence of first differences. It was there and pointed m e in 
the d i rec t ion of the l i t e ra tu re . E n c h a n t i n g " (Herber t S. Wilf, Un ive r s i t y of 
Pennsylvania) . 

"I also found N . J. A. S loane ' s A Handbook of Integer Sequences to b e an 
invaluable tool. I shall say no more about this marvelous reference except that 
e v e r y r e c r e a t i o n a l m a t h e m a t i c i a n s h o u l d b u y a c o p y f o r t h w i t h " ( M a r t i n 
Gardner, Scientific American, July 1974). 

2Also called the triangular lattice. 
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" I n c o m p a r a b l e , eccen t r i c , ye t ve ry usefu l . C o n t a i n s t h o u s a n d s of ' w e l l -
defined and in teres t ing ' infinite sequences together wi th references for each. 
Sequences are arranged lexicographical ly and (to min imize errors) typeset from 
computer tape. If you ever wondered wha t comes after 1, 2, 4 , 8, 17, 35 , 7 1 , 
this is the p lace to look it u p " (Lynn A. Steen, Telegraphic Review, American 
Mathematical Monthly, Apri l 1974). 

Nontechnica l readers wrote to bless us , to speak of reading the book "cover to 
cover," or to remark that it was gett ing a great deal of use to the detr iment of 
household chores and so on. Specialists in various fields had other tales to tell. 

Anthony G. Shannon , an Austral ian combinator ia l mathemat ic ian , wrote: "I 
mus t say how impressed I am with the book and already I a m insisting that m y 
students k n o w their way around it jus t as with classics such as Abramowi tz and 
Stegun." 

Researchers wrote: "Our process of discovery consisted of generat ing these 
s equences and then ident i fy ing t h e m wi th the a id of S l o a n e ' s Handbook of 
Integer Sequences" (J. M. Borwein , R B . Borwein , and K. Dilcher, American 
Mathematical Monthly, October 1989). 

Allen J. Schwenk , a graph theorist in Mary land wrote: "I thought I had some
thing new until your book sent m e to the Riordan reference, where I found 8 0 % 
of m y results and so I abandoned the problem." 

W e rece ived let ters descr ib ing the usefulness of the Handbook f rom such 
diverse readers as: a German geophysicist , a West Virginian astronomer, various 
graduate s tudents , physicists , and even an epistemologist . 

Finally, Harvey J. Hindin, wri t ing from N e w York concluded a letter by say
ing: 

"The re ' s the Old Testament , the N e w Testament , and the Handbook of 
Integer Sequences!' 





Abbreviations 
Abbreviations for the references are listed in the bibliography. References to journals 

give volume, page number, year. 

a (n ) 

A{x) 

AND 

BN 

b.c.c . 

binomial transform 

C(n) or Cn 

C(n,k) or ( n

k) 

E.g.f. 

Euler transform 

expx 

F(n) or Fn 

nth term of sequence 

generating function for sequence, usually the or
dinary generating function A(x) = 
occasionally the exponential generating function 
AE(x) = Y^anxn/n\ 

logical 'AND", sometimes applied to binary repre
sentations of numbers 

Bernoulli number (see Fig. M4189) 

body-centered cubic lattice (see [SPLAG 116]) 

of sequence ao, CL\ , • •. is sequence 60, b\,... where 

nth Catalan number (see Fig. M1459) 

binomial coefficient (see Fig. Ml645) 

exponential generating function 
AE{x) = J2anXn/nl 

of sequence ao, a\,... is sequence b\, 62, • • • where 

0 0 0 0 

1 

t.—n \ / 

n=0 

nth Fibonacci number (see Fig. M0692) 

xi 



ABBREVIATIONS 

usually nth prime, occasionally nth partition number, 
but in latter case always identified as such 

a prime or prime power 

reference(s) 

reversion of exponential generating function 

reversion of ordinary generating function 

with respect to 

logical "EXCLUSIVE OR", usually applied to binary 
representations of numbers 

n-dimensional laminated lattice (see [SPLAG, 
Chap. 6]) 

Mobius function (see M0011) 

ratio of circumference of circle to diameter (see 
Fig. M2218) 

a product, usually from 1 (or 0) to infinity, unless 
indicated otherwise 

sum of divisors of n (see M2329) 

a sum, usually from 0 (or 1) to infinity, unless indi
cated otherwise 

the golden ratio (1 + V?) / 2 (see M4046) 

Euler totient function (see Fig. M0500) 

exponentiation 

factorial symbol: 0! = 1, n\ = 1.2.3. • • • .n, n > 1 
(see Fig. M4730) 

number 

largest integer not exceeding x 

smallest integer not less than x 



ABBREVIATIONS 

f.c.c. 

g.c.d. 

G.f. 

h.c.p. 

Lc.m. 

Lgd.e.g.f. 

Lgd.o.g.f. 

Mobius transformation 

multiplicative encoding 

n 

0.g.f. 

OR 

hypergeometric series (see [Slat66]): 

m F n ( [ n , r 2 , . . . , r m ] ; [sus2,... ,sn];x) 

where (r)o = 1, (r)fc = r(r + 1) • • • (r + /c — 1), 
for A; = 1 ,2 , . . . 

face-centered cubic lattice (see [SPLAG 112]) 

greatest common divisor 

generating function, usually the ordinary generating 
function A(x) 

hexagonal close packing (see [SPLAG 113]) 

least common multiple 

logarithmic derivative of exponential generating 
function 

logarithmic derivative of ordinary generating 
function 

of sequence a\, a2,... is sequence b\, 62, . . . , where 

d\n 

and fi(n) is the Mobius function M0011 

of a triangular array { t (n , k) > 0; n = 0 , 1 , . . . and 
0 < k < n} is the sequence whose nth term is 

whose pi = 2, P2 = 3 , . . . are the primes 

either a typical subscript , as in M0705: "a(ri) = 
a{n — 1) + lain — 3)", or a typical term in the 
sequence, as in M0641: "6« — 1, 6n + 1 are twin 
primes" 

ordinary generating function A(x) 

logical "OR", usually applied to binary representa
tions of numbers 

P a prime 





Chapter 1 

Description of the Book 
It is the fate of those who toil at the lower employments of life, to be driven 

rather by the fear of evil, than attracted by the prospect of good; to be exposed to 
censure, without hope of praise; to be disgraced by miscarriage, or punished for 
neglect, where success would have been without applause, and diligence without 
reward. 

Among these unhappy mortals is the writer of dictionaries; whom mankind 
have considered, not as the pupil, but the slave of science, the pionier of literature, 
doomed only to remove rubbish and clear obstructions from the paths of Learning 
and Genius, who press forward to conquest and glory, without bestowing a smile 
on the humble drudge that facilitates their progress. Every other authour may 
aspire to praise; the lexicographer can only hope to escape reproach, and even 
this negative recompense has yet been granted to very few. 

Samuel Johnson, Preface to the "Dictionary," 1755 

This epigraph, copied from the 1973 book, still applies! 

1.1 Description of a Typical Entry 

The main table is a list of about 5350 sequences of integers. A typical entry 
is: 
M 1 4 8 4 1 , 1 , 2 , 5 , 1 5 , 5 2 , 2 0 3 , 8 7 7 , 4 1 4 0 , 2 1 1 4 7 , 1 1 5 9 7 5 , 6 7 8 5 7 0 , 
4 2 1 3 5 9 7 , 2 7 6 4 4 4 3 7 , 1 9 0 8 9 9 3 2 2 , 1 3 8 2 9 5 8 5 4 5 , 1 0 4 8 0 1 4 2 1 4 7 , 
8 2 8 6 4 8 6 9 8 0 4 , 6 8 2 0 7 6 8 0 6 1 5 9 , 5 8 3 2 7 4 2 2 0 5 0 5 7 
Bel l or exponent ia l numbers : a(n + 1) = E a ( f t ) C ( n , fc). See Fig M 4 9 8 1 . Ref 
M O C 16 418 62. A M M 71 498 64. P S P M 19 172 7 1 . G 0 7 1 . [0,3; A 0 1 1 0 , 
N0585] 

E.g.f.: exp(e* - 1) 

and consists of the fol lowing i tems: 

1 
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M 1 4 8 4 The sequence identification number in this book 

1, 1, 2, 5, 15, 52 , . . . The sequence itself 

Bel l or exponent ia l N a m e or descriptive phrase 
number s 

a(n + 1) 

= 5 > ( J f e ) C ( r c , * 0 

See F i g M 4 9 8 1 

Ref 

M O C 16 418 62 

A M M 7 1 498 64 

0,3 

A recurrence: a(n) is the n t h term, C(n,k) 
is a b inomia l coefficient, and the sum is over 
the natural range of the d u m m y variable, in this 
case over k = 0 , 1 , . . . , n 

Fur ther information will be found in the figure 
accompanying sequence M 4 9 8 1 

References 

Mathematics of Computation, vol. 16, p . 418 , 
1962 

American Mathematical Monthly, vol . 7 1 , 
p . 498 , 1964 

For other references, see the bibl iography 

The offset [inside square brackets] : the first 
number , 0, indicates that the first term given is 
a ( 0 ) , and the second number , 3 , that the third 
term of the sequence is the first that exceeds 1 
(the latter is used to de termine the posit ion of 
the sequence in the lexicographic order in the 
table) 

Absolute identification number for the sequence 

(If present) the identification number of the se
quence in the 1973 book [HIS] 

Further information about the sequence (typi
cally a generat ing function or recurrence) m a y 
be displayed following the sequence; in this 
case "E.g.f." indicates an exponent ia l generat
ing function — see Sect ion 2.4. 

We have at tempted to give the simplest possible descript ions. In the descr ip
t ions, phrases such as "The number of" or "The number of dist inct" have usual ly 
been omit ted. Since there are often several ways to interpret "dist inct", there m a y 
be m o r e than one sequence with the same name . The principal sequences are 

A 0 1 1 0 

N 0 5 8 5 

E.g.f. 
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descr ibed in detail , whi le less information is given about subsiduary ones . The 
indices are usual ly 0 , 1 , 2 , . . . or 1 , 2 , 3 , . . . , or somet imes the pr imes 2 , 3 , 5 , . . . . 
The first number in square brackets at the end of the descript ion gives the initial 
index. 

1.2 Arrangement of Table 

The entries are arranged in lexicographic order, so that sequences beginning 
2, 3 , . . . c o m e before those beginning 2, 4 , . . . , etc. A n y initial 0 's and l ' s are 
ignored when doing this. 

1.3 Number of Terms Given 

Wheneve r poss ib le enough terms are given to fill two lines. If fewer terms 
are given it is because either no one knows the next te rm (as in sequences M 0 2 1 9 , 
M 0 2 2 3 , M 0 2 3 3 , M 0 2 4 0 , M 0 5 8 2 , M 5 4 8 2 , for example) , or because a l though it 
wou ld be straightforward to calculate the next term, no one has taken the t rouble 
to do so (as in sequences M 0 1 1 5 , M 0 1 6 3 , M 0 4 0 6 , M 0 6 8 6 , M 0 7 0 4 , M 5 4 8 5 , etc.). 
We encourage every reader to p ick a sequence, extend it, and send the results to the 
first author, whose address is given in Sect ion 2.2. Of course some sequences are 
k n o w n to be hard to extend: see Fig. M 2 0 5 1 . The current status of any sequence 
can be found via the emai l servers ment ioned in Sect ion 2.9. 

1.4 References 

To conserve space, journa l references are extremely abbreviated. They usually 
give the exact page on which the sequence m a y be found, but nei ther the author 
nor the title of the article. To find out more the reader mus t go to a l ibrary; to get 
the mos t out of this book, it should be used in conjunction wi th a library. 

J o u r n a l r e f e r ences u s u a l l y give v o l u m e , p a g e , a n d year , in t h a t o r d e r . (See 
the example at beginning of this chapter.) Years after 1899 are abbreviated, by 
dropping the 19. Earl ier years are not abbreviated. Somet imes to avoid ambigui ty 
w e use the m o r e expanded form of: journa l n a m e (series number ) , vo lume n u m b e r 
(issue number ) , page number , year. 

R e f e r e n c e s to books g ive v o l u m e (if a n y ) a n d p a g e . (See the example at the 
beginning of this chapter.) 

The references do not a t tempt to give the discoverer of a sequence , but rather 
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the mos t extensive table of the sequence that has been publ ished. 

In mos t cases the sequence will be found on the page cited. In some instances, 
however , for instance w h e n w e have not seen the article (if it is in an obscure 
conference proceedings , or more often because the sequence was taken from a 
pre-publ icat ion version) the reference is to the first page of the article. Our pol icy 
has been to include all interest ing sequences , no mat ter how obscure the reference. 
In a few cases the reference does not describe the sequence itself but only a 
closely-related one. 

1.5 What Sequences Are Included? 

To be included, a sequence must satisfy the fol lowing rules (a l though excep
tions have been m a d e to each of them) . 

Rule 1. The sequence mus t consist of nonnegat ive integers. 

Sequences with varying signs have been replaced by their absolute values. 

Interesting sequences of fractions have been entered by numera tors and de
nominators separately. 

Arrays have been entered by rows, co lumns or diagonals , as appropriate , and 
in some cases by the multiplicative representat ion descr ibed in Fig. M l 7 2 2 . 

Some sequences of real numbers have been replaced by their integer parts , 
others by the nearest integers. 

T h e only genuine exceptions to Rule 1 are sequences such as M 0 7 2 8 , M l 5 5 1 , 
which are integral for a considerable number of terms al though eventually becom
ing nonintegral . 

Rule 2. The sequence mus t be infinite. 

Except ions have been m a d e to this rule for certain important number- theoret ic 
sequences , such as Euler ' s idoneal (or suitable) numbers , M 0 4 7 6 . M a n y se
quences , such as the M e r s e m n e pr imes , M 0 6 7 2 , which are not yet k n o w n to be 
infinite, have been given the benefit of the doubt. 

Rule 3. The first nontrivial te rm in the sequence, i.e. the first that exceeds 1, 
mus t be be tween 2 and 999 . 
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The posi t ion of the sequence in the lexicographic order in the table is de termined 
by the terms of the sequence beginning at this point . 

The artificial sequences M 0 0 0 4 and M 5 4 8 7 m a r k the boundar ies of the table. 

Rule 3 implici t ly excludes sequences consist ing of only O's and l ' s . However , 
for technical reasons related to the sequence t ransformations discussed in Sect. 2 .7, 
a few 0 , 1 sequences have been included. They appear at the beginning of the ma in 
table. 

Rule 4 . The sequence must be well-defined and interesting. Ideally it should 
have appeared somewhere in the scientific l i terature, a l though there are many 
except ions to this. E n o u g h terms mus t be k n o w n to dis t inguish the sequence from 
its ne ighbors in the table, a l though one or two except ions to this have been m a d e 
for especial ly impor tant sequences . 

T h e selection has inevitably been subjective, but the goal has been to include a 
broad variety of sequences and as many as possible . 

1.6 The Figures 

The figures interspersed through the table give further information about certain 
sequences . Our aim, not fully achieved, was that taken together the figures and the 
table entries would give at least a brief descript ion of the propert ies of the mos t 
impor tant sequences . B y combin ing the entry for the subfactorial or rencontres 
numbers , M 1 9 3 7 , for instance, with the information from Fig. M 1 9 3 7 , one can 
obtain a definition, exact formula, generat ing function and a recurrence for these 
numbers . 

The figures serve two other purposes . O n e is to provide a short d iscussion 
of certain especial ly interesting families of sequences (such as "se l f -generat ing" 
sequences , Fig. M 0 4 3 6 ; famous hard sequences , Fig. M 2 0 5 1 ; or our favorite 
sequences , Fig. M 2 6 2 9 ) . 

The other is to display the mos t important arrays of numbers and the sequences 
to which they give rise — see Fig. M l 6 4 5 , for example , which describes some of 
the many sequences connected with the diagonals and even the rows of Pascal ' s 
tr iangle. These figures compensa te to a certain extent for the fact that the book 
does not catalogue arrays of numbers . 





Chapter 2 

How to Handle a Strange 
Sequence 

We begin with tests that can be done "by hand" , then give tests need ing a 
computer , and end by describing two on-l ine versions of the Encyclopedia that can 
be accessed via electronic mail . 

2.1 How to See If a Sequence Is in the Table 

Obtain as many terms of the sequence as possible . To look it up in the table, 
first omi t all minus signs. Then find the first nontrivial term in the sequence , i.e. 
the first that exceeds 1. T h e terms beginning at this point de termine where the 
sequence is p laced in the lexicographic order in the table. 

For example , to locate 1, 1, 1, 1, 1,2, 1, 2 , 3 , 2 , 3 , . . . , the under l ined number 
is the first nontrivial term, so this sequence should be looked up in the table at 2 , 
1 ,2 , 3 , 2 , 3 , . . . (it is M 0 1 1 2 ) . 

For handl ing arrays, rat ionals or real numbers , see Sect ion 1.5. 

2.2 If the Sequence Is Not in the Table 

• Try examining the differences be tween terms, as discussed in Sect ion 2.5 , 
and look for a pat tern. 

• Try t ransforming the sequence in some of the ways descr ibed in Sect ion 2.7, 
and see if the t ransformed sequence is in the table. 

• Try the further me thods of at tack that are men t ioned in Sections 2.6 and 
2.8 . 

• Send it by electronic mai l to s u p e r s e e k e r @ r e s e a r c h . a t t . c o m , as 
descr ibed in Section 2.9. This p rogram automatical ly applies m a n y of the 

7 
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tests descr ibed in this chapter. 

• If all these me thods fail, and it seems that the sequence is nei ther in the 
Encyclopedia nor has a s imple explanat ion, please send the sequence and 
anything that is k n o w n about it, including appropriate references, to the first 
au thor 1 for poss ible inclusion in the table. 

2.3 Finding the Next Term 

Suppose w e are given the first few terms 

ao a\ ci2 a3 a4 as 

of a sequence, and would like to find a rule or explanat ion for it. If noth ing is 
k n o w n about the his tory or p rovenance of the sequence, nothing can be said, and 
any cont inuat ion is possible . (Any n + 1 points can be fitted by an n t h degree 
polynomial . ) 

But the sequences normal ly encountered, and those in this book, are distin
guished in that they have been produced in some intell igent and systematic way. 
Occasional ly such sequences have a s imple explanation, and if so, the methods 
discussed in this chapter m a y help to find it. These methods can be divided roughly 
into two classes: those which look for a systematic way of generat ing the n t h term 
an from the te rms ao, •. •, a n _ i before it, for instance by a recurrence such as 
&n = a n _ i + a n _ 2 , i.e. me thods which seek an internal explanat ion; and those 
which look for a systemat ic way of going from n to an, e.g. an is the number 
of divisors of n, or the n u m b e r of trees wi th n nodes , or the n t h p r ime number , 
i.e. methods which seek an external explanat ion. The me thods in Sect. 2.5 and 
some of those in Sect. 2.6 are useful for a t tempting to discover internal explana
t ions. External explanat ions are harder to find, a l though the t ransformations in 
Sect. 2.7 are of some help , in that they may reveal that the unknown sequence is a 
t ransformation of a sequence that has already been studied in some other context. 

In spite of the warn ing given at the beginning of this section, in pract ice it is 
usually clear w h e n the correct explanat ion for a sequence has been found. " O h 
yes, of course!" , one says. 

There is an extensive l i terature dealing with the mathemat ica l p rob lems of defin
ing the complexity of sequences . We will not discuss this subject here , but s imply 
refer the reader to the l i terature: see for example Feder et al. [PGIT 38 1258 92 ] , 

Address : NJ .A. Sloane, Room 2C-376, Mathematical Sciences Research Center, 
AT&T Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974 USA; electronic mail: 
njas@research.att.com; fax: 908 582-3340. 

mailto:njas@research.att.com
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Fine [IC 16 331 70] , [FI1], Mar t in-Lof [IC 9 602 66] , Ziv [Capo90 366] , L e m p e l 
and Ziv [PGIT 22 75 76] , as wel l as a n u m b e r of other papers by Ziv and his 
col laborators that have appeared in [PGIT] . 

2.4 Recurrences and Generating Functions 

Let the sequence be a0, a\, a2, a 3 , Is there a systematic way of get t ing the 
n t h te rm an from the preceding te rms a n _ i , a n - 2 , . . . ? A rule for doing this, such 
as an = a2

n_i — ctn-2, is cal led a recurrence, and of course provides a me thod for 
gett ing as many te rms of the sequence as desired. 

W h e n s tudying sequences and recurrences it is often convenient to represent 
the sequence by a power series such as 

wh ich is called its (ordinary) generating function (o.g.f. or s imply g.f.), or 

its exponential generating function (or e.g.f.). (These are formal power series 
having the sequence as coefficients; quest ions of convergence will not concern 
us.) 

For example , the sequence M 2 5 3 5 : 1, 3 , 6, 10, 15, . . . of t r iangular number s 
has 

Genera t ing functions provide a very efficient way to represent sequences . 

A great deal has been wri t ten about h o w generat ing functions can b e used 
in mathemat ics : see for example Bender & Go ldman [ IUMJ 20 753 71 ] , Berg
eron, Label le and Leroux [BLL94] , C a m e r o n [ D M 75 89 89] , Doubilet , Ro ta and 
Stanley [Rota75 83] , Graham, Knu th and Patashnik [GKP] , Harary and Pa lmer 
[HP73] , Leroux and Mi loudi [LeMi91] , Riordan [ R l ] , [RCI] , Stanley [Stan86] , 
Wilf [Wilf90]. (See also the very interest ing work of Yiennot [Vien83].) 

Once a recurrence has been found for a sequence, techniques for solving it wil l 
be found in Batchelder [Batc27] , Greene and Knu th [GK90] , Levy and Les sman 
[LeLe59] , Riordan [ R l ] , and W i m p [Wimp84] . 

A(x) — CLQ + CL\X + CL2X2 + CL3X3 + • • • , 

E(x) = ao + ai — + a 2 — + a 3 — H , 

A(x) 
1 
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For example , consider M 0 6 9 2 , the Fibonacci numbers : 1, 1,2, 3 , 5, 8, 13, 2 1 , 
34, . . . . These are generated by the recurrence an = a n _ i + a n _ 2 , and from this 
it is not difficult to obtain the generat ing function 

1 + x + 2x2 + 3x3 + 5x4 + • • • = 
1 

1 — x — X2 

and the explicit formula for the n t h term: 

n + l 
1 

an = 
V5 

n + l ' 

2.5 Analysis of Differences 

This is the best m e t h o d for analyzing a sequence "by hand" . In favorable cases 
it will find a recurrence or an explicit formula for the n t h term of a sequence , or at 
least it m a y suggest how to cont inue the sequence. It succeeds if the n t h term is a 
po lynomia l in n , as wel l as in many other cases. 

If the sequence is 

ao, a i , a2, a3 , ( 2 4 , . . . , 

then its first differences are the numbers 

Aao = a\ — ao, Aai = a2 — a i , Aa2 = — a2, . . . , 

its second differences are 

A 2 a o = Aai — Aao, A 2 a i = Aa2 — A a i , A 2 a 2 = Aa3 — Aa2, . . . , 

and so on. The 0th differences are the original sequence: A°ao = ao, A°a i = a i , 
A°a2 = a 2 , . . . ; and the kth differences are 

Akan = A f c _ 1 a n + i - A k ~ l a n 

or, in te rms of the original sequence, 

(2.1) 

Therefore if the differences of some order can be identified, Eq . (2.1) gives a 
recurrence for the sequence . Fur thermore , if the differences a m , A a m , A 2 a m , 
A 3 a m , . . . are k n o w n for some fixed value of m , then a formula for the n t h term is 
given by 

(2.2) 
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The array of number s 

a0 ai a2 a3 

Aao Aa\ Aa,2 Ad3 

A2 d0 A2di A2d2 

A 3 a 0 A 3 a i 

is called the difference table of depth 1 for the sequence. 

E x a m p l e (i). M 3 8 1 8 , the pentagonal numbers : 

n 1 2 3 4 5 6 7 8 
dn 1 5 12 22 35 51 70 92 

Adn 4 7 10 13 16 19 22 
A2dn 3 3 3 3 3 3 
A3dn 0 0 0 0 0 

Since A 2 a n = 3 , Aa, n + l — A a n = 3 , i.e. &n+2 — 2 a n + i = 3 , wh ich ii 
recurrence for the sequence. A n explicit formula is obtained from Eq. (2.2) wi th 
m = 1: 

a n + 1 = 1 + 4 Q + 3 Q = 1 + 4 n + 3 ^ i l = i ( „ + l ) ( 3 n + 2) . 

In general , if the r t h differences are zero, a n is a po lynomia l in n of degree 
r - 1. 

E x a m p l e (ii). M 3 4 1 6 , Euler ian numbers : 

n 0 1 2 3 4 5 6 7 

an 
0 1 4 11 26 57 120 247 

Adn 1 3 7 15 31 63 127 
A2dn 2 4 8 16 32 64 

Here A 2 a n = 2 n + 1 , A a n = 2 n + 1 - 1, and dn = 2 n + 1 - n - 2. Equa t ion (2.2) 
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gives the same answer. 

E x a m p l e (Hi). M 1 4 1 3 , the Pell numbers : 

n 1 2 3 4 5 6 7 
an 1 2 5 12 29 70 169 

Aan 1 3 7 17 41 99 
A2an 2 4 10 24 58 

\A2an 1 2 5 12 29 

Since ^ A 2 a n = a n , Eq. (2.1) gives the recurrence a n + 2 — 2 a n + i — an = 0. 
Calculat ing further differences shows that Aka\ = 2 ^ / 2 ^ and so Eq. (2.2) gives the 
formula 

If no pat tern is visible in the difference table of depth 1, w e m a y take the leading 

diagonal of that table to be the top row of a new difference table, the difference 

table of depth 2, and so on. For example , the difference table of depth 1 for 

0 , 2 , 9 , 3 1 , 9 7 , 2 9 1 , 8 5 7 

is 

0 2 9 31 97 291 857 
2 7 22 66 194 566 

5 15 4 4 128 372 
10 29 84 244 

19 55 160 
36 105 

69 

N o pat tern is visible, so w e compute the difference table of depth 2: 

0 2 5 10 19 36 69 
2 3 5 9 17 33 

1 2 4 8 16 

Success! If w e denote the sequence 0 , 2 , 5 , . . . by 60> &i > &2> • • •> then w e see that 
A 2 6 n = 2 n , bn = 2n + n - 1, and the original sequence is 

k=0 v J 
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In general , the relat ionship be tween the top row of a difference table 

bo — ao a\ 0,2 03 04 as 
h .... • 

h 

and the leading diagonal is given by 

2.6 Other Methods for Hand Analysis 

• Try t ransforming the sequence in various ways — see Sect. 2 .7. • Is the 
sequence close to a k n o w n sequence , such as the powers of 2? If so, try subtract ing 
off the k n o w n sequence. For example , M 3 4 1 6 (again): 0, 1, 4, 11 , 26 , 57 , 120, 
247 , 502, 1013, 2036 , 4 0 8 3 , . . . . The last four numbers are close to powers of 2: 
512 , 1024, 2048 , 4096 ; and then it is easy to find an = 2n - n - 1. 

• Is a s imple recurrence such as an = aan-i + f3aN-2 (where a,/3 are 
integers) l ikely? For this to happen, the rat io pn = a n + i / a n of successive terms 
mus t approach a constant as n increases. Use the first few values to de termine a 
and (3 and then check if the remain ing terms are generated correctly. 

• If the ratio pn has first differences which are approximately constant , this 
suggests a recurrence of the type an = anan-\ • • • . For example , M 1 7 8 3 : 0, 
1, 2 , 7, 30, 157, 972, 6 9 6 1 , 56660 , 5 1 6 9 0 1 , . . . has successive rat ios 2, 3.5, 
4 .29, 5 .23, 6.19, 7.16, 8.14, 9.12, . . . wi th differences approaching 1, suggest ing 
an = n a n _ i + ? . Subtract ing n a n _ i from a n , w e obtain the original sequence 0, 
1, 2, 7, 30, 157, 972 , . . . again, so an = nan-\ + a n _ 2 . 

This example i l lustrates the pr inciple that whenever pn = a n + i / a n seems to 
b e close to a recognizable sequence r n , one should try to analyze the sequence 

• A recurrence of the form an = nan-\ + (small term) can be identified by the 
fact that the 10th term is approximately 10 t imes the 9th. For example , M l 9 3 7 : 0, 
1, 2, 9, 44 , 2 6 5 , 1854, 14833, 133496, 1334961 , . . . , an = n a n _ i + ( - l ) n . 

• The recurrence an = a2

n_x + • • • is character ized by the fact that each te rm 
is about twice as long as the one before. For example , M 0 8 6 5 : 2, 3 , 7, 4 3 , 1807, 
3263443 , 10650056950807 , . . . , and an = a 2 _ x - a n _ i + 1. 
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• Does the sequence, or one obtained from it by some s imple operat ion, have 
m a n y factors? Consider the sequence 1, 5, 2 3 , 119, 719, 5039 , 40319 , A s it 
s tands, the sequence cannot be factored, since 719 is p r ime, but the addit ion of 1 
to all the terms gives the highly composi te sequence 2 , 6 = 2 - 3, 24 = 2 - 3 - 4 , 
120 = 2 • 3 • 4 • 5 , . . . , which are the factorial numbers , M 1 6 7 5 . 

• The presence of only small p r imes m a y also suggest b inomia l coefficients. 
For example , M 1 4 5 9 , the Catalan number s : 1, 1, 2 , 5, 14 = 2 • 7, 4 2 = 2 • 3 • 7, 
132 = 4 - 3 - 1 1 , 4 2 9 = 3 - 1 1 - 1 3 , 1430 = 2 - 5 - 1 1 - 1 3 , 4 8 6 2 = 2 • 11 • 13 • 1 7 , . . . 

(see Fig. M 1 4 5 9 ) . 

• Is there a pat tern to the exponents in the p r ime factorization of the te rms? 
E. g. M 2 0 5 0 : 2 = 2 1 , 12 = 223\ 360 = 2 3 3 2 5 1 , etc. 

• Sequences arising in number theory are somet imes multiplicative, i.e. have 
the proper ty that a m n = a m a n whenever m and n have no c o m m o n factor. For 
example , M 0 2 4 6 : 1, 2 , 2 , 3 , 2, 4, 2, 4 , . . . , the number of divisors of n. 

• If the sequence is two-valued, i.e. takes on only two values X and Y 
(say), check if any of the six characteristic sequences can be recognized. The 
characterist ic sequences , all essentially equivalent to the original sequence, are: 

1. Replace X ' s and 7 ' s by 1 's and 2 's 

2. Replace X ' s and Y ' s by 2 ' s and l ' s 

3 . The sequence giving the posi t ions of the X ' s 

4. The sequence giving the posi t ions of the Y ' s 

5. The sequence of run lengths 

6. The derivative sequence, i.e. the posi t ions where the sequence changes 

For example , the sequence 

2 , 2 , 3 , 3 , 3 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 2 , 3 , 3 , 3 , 3 , . . . 

and 

contains runs of lengths 

2 , 3 , 5 , 7 , 1 1 , . . . 

which suggests the p r ime numbers as a possible explanation. 
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• Wr i t e the terms of the sequence in base 2, or base 3, . . o r base 8, and see 
if any pat tern is visible. E.g. M 2 4 0 3 : 0, 1, 3 , 5, 7, 9, 15, 17, 2 1 , . . . , the binary 
expansion is a pa l indrome. 

• If the terms in the sequence are all s ingle digits , is it the dec imal expans ion 
of a recognizable constant? See Fig. M 2 2 1 8 . If only digits in the range 0 to b — 1 
occur, is it the expansion of some constant in base bl 

• Can anything be learned by consider ing the Engl ish words for the te rms of 
the sequence? M l 0 3 0 and M 4 7 8 0 are typical examples of sequences that can be 
explained in this way. 

• There are a number of techniques for a t tempt ing to find a recurrence or 
generat ing function for a sequence. Mos t of these are best carried out by computer : 
see Sect. 2 .8 . 

• The quotient-difference a lgori thm. One such method , however , can be 
carr ied out by hand. This procedure will succeed if the sequence satisfies a 
recurrence of the form 

where r and c\,..., cr are constants . The following descript ion is due to L u n n o n 
[Lunn74] , w h o calls it the quotient-difference algorithm, s ince it is s imilar to 
a s tandard me thod in numerica l analysis (cf. Gragg [SIAR 14 1 7 2 ] , Henr ic i 
[Henr67] , Jones and Thron [JoTh80]) . The a lgor i thm is also descr ibed by C o n w a y 
and Guy [CoGu95] . Given a sequence ao, a\,..., w e form an array {Sm,n} wi th 
5 o , n — 1 f ° r a n < n ' £ i , n = a n , and in general 

r 

(2.4) 
i - l 

= det 

a, '71 

0>n 

Q>n-\-m— 1 

& n + r a - 2 (2.5) mn 

Q"n—ra+1 a. '71 

Any entry X in the array is related to its four neighbors 

TV 
W X E 

S 

by the rule 
NS + EW (2.6) 

and this can be used to build up m u c h of the array, falling back on (2.5) when (2.6) 
is indeterminate . A recurrence of the form (2.4) holds if the (r + l ) t h row *SV+i n 

is identically zero. 
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For example , M 2 4 5 4 : 1, 1, 1, 3 , 5, 9 , . . . gives rise to the array 

1 1 1 1 1 1 1 1 1 
1 1 1 3 5 9 17 31 57 

0 - 2 4 - 2 - 4 10 - 8 
4 4 4 4 4 

0 0 0 

R o w 4 is identically zero, and indeed 

tin = Q>n-1 + a n - 2 + & n - 3 • 

Zeros cause a p rob lem in bui lding the table, since then both sides of (2.6) vanish. 
Lunnon shows that the zeros always form square " w indows" , as i l lustrated in the 
fol lowing array for the sequence of F ibonacc i numbers minus one (cf. M l 0 5 6 ) : 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

4 - 4 1 - 2 0 - 1 0 0 1 2 4 7 12 20 

12 - 7 4 - 2 1 0 0 1 0 2 1 4 

1 - 1 1 - 1 1 - 1 1 - 1 1 - 1 

0 0 0 0 0 0 0 0 

There are s imple rules for work ing past a w indow of zeros, found by J. H. Conway, 
and included here at his suggest ion (see also [CoGu95]) . To work past an isolated 
zero 

N' 
N 

W W 0 E E ' 
S 
S' 

w e use the rule that N2S' + N'S2 = W2E' + WE2. To work around a larger 
w indow such as 
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w3 

W2 

U>1 

• 1 1 • 
/ ^ n 2 

/I 

1 — ^ - - 1 L — = 5 — - I T 

S2 S 3 

TV 

o o o 

o o o 

o o o 
w w U) w 

—• 

e2 

e3 

w e let n, 5, e, u>, n i , s i , . . . denote the ratios of the entries at the head and tail of 
the appropriate arrow. Then the rules are that 

ns = ± ew 

( + for even-sized windows , — for odd-s ized) , and 

s 
- V± 

n 
_ !£ i 

w e 

s 
- Vl 

n W e 
- Vl w3 

5 n w e 

etc. 

However , if a compute r is available, it is general ly easier to use the gf u n 
package (Sect. 2.8) than the quotient difference algori thm. 

Getu et al. [SIAD 5 497 92] show that in some cases one can learn m o r e by 
decompos ing the matr ix on the r ight -hand side of (2.5) into a p roduc t of lower 
tr iangular, d iagonal , and upper tr iangular matr ices . 

• Is there any other way in which the n t h term of the sequence could be 
p roduced from the preceding terms? Does the sequence fall into the class of wha t 
are loosely cal led self-generating sequences? A typical example is M 0 2 5 7 : 1, 2, 
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2, 3, 3 , 4 , 4 , 4 , 5 , . . . , in wh ich an is the number of t imes n appears in the sequence. 
See Figs. M 0 4 3 6 , M 0 5 5 7 for further examples . 

• Is this a Beat ty sequence? If a and (3 are posit ive irrational number s wi th 
1 / a + l/P = 1, then the Beatty sequences 

[a ] , [2a] , [ 3 a ] , . . . and [/3], [2/3], [ 3 / 3 ] , . . . 

together contain all the posit ive integers wi thout repeti t ion (see Fig. M l 3 3 2 ) . The 
fol lowing test for Beat ty sequences is due to R. L. Graham. If a\, a 2 , . . . is a Beat ty 
sequence , then the values of a i , . . . , a n _ i determine an to wi thin 1. L o o k at the 
sums a\ + a n - \ , a2 + a n _ 2 , • • • > & n - i -\-a\. If all these sums have the same value, 
V say, then an mus t equal V or V + 1; but if they take on the two values V and 
V + 1, and no others , then an mus t equal V + 1. If anything else happens , it is 
not a Beatty sequence. For example , in the Beat ty sequence M 2 3 2 2 : 1, 3 , 4 , 6, 8, 
9, . . . , w e have a i + a\ = 2 so a2 mus t be 2 or 3 (it is 3); a\ + a2 — 4 so a3 mus t 
be 4 or 5 (it is 4) ; a i + = 5 and a2 + a2 — 6, so mus t be 6 (it is); and so on. 

2.7 Transformations of Sequences 

One of the mos t powerful techniques for investigating a s trange sequence is to 
t ransform it in some way and see if the result ing sequence is either in the table or 
can be otherwise identified. (A more elaborate procedure , at present prohibit ively 
expensive, would apply these t ransformations both to the u n k n o w n sequence and 
to all the sequences in the table, and then look for a match be tween the two lists.) 

For example , the sequence 1, 4 , 5, 11 , 10, 20 , 14, 27 , 24 , 3 4 , . . . (of no special 
interest, invented s imply to illustrate this point) , is not in the table. Bu t the Mob ius 
transform of it (defined be low) is 1, 3 , 4, 7, 9, 12, 13, 16, 19, 2 1 , . . . wh ich is 
M 2 3 3 6 , the sequence of n u m b e r s that are of the form x2 + xy + y2. 

This section describes some of the principal t ransformations that can be ap
plied. Al though any single t ransformation can be per formed by hand, a thorough 
investigation u)sing these me thods is best carried out by computer . The p rogram 
s u p e r s e e k e r described in Sect. 2.9 tries many such transformation. 

Our nota t ion is that ao, a i , a 2 l . . . is the unknown sequence, and A(x) and 
A E ( X ) are its ordinary and exponent ia l generat ing functions; bo, &i, b2,... is the 
t ransformed sequence wi th o.g.f. B{x) and e.g.f. B E ( X ) . 

We begin wi th s o m e elementary t ransformations. The reader will easily invent 
many others of a s imilar nature. ( S u p e r s e e k e r actually tries over 100 such 
transformations.) 
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• Translat ions: bn = an + c; bn = an + n + c; bn = an — n + c; whe re c is 
- 3 , - 2 , - 1 , 0 , 1,2, or 3 . 

• Rescal ing: bn = 2 a n ; 6 n = 3 a n ; 6 n = a n divided by the g.c.d. of all the 
a i ' s ; the same after delet ing ao; the same after delet ing ao and a i ; 6 n = a n / n ! (if 
integral) . If all an are odd, set bn = (an — l ) / 2 . 

• Differences: bn = A a n ; bn = A 2 a n ; etc. If an divides a n + i for all n, set 

bn — & n + l / & n -

• Sums of adjacent terms: 6 n = an + a n _ i ; 6 n = an + a n _ 2 . 

• Bisect ions: bn = a 2 n ; &n = Q>in+\\ t r isections: bn = a 3 n ; 6 n = a 3 n + i , 
&n = a 3 n + 2 , etc. 

• Reciprocal of generat ing function: B(x) = l/A(x). For the combinator ia l 
interpretat ion of bn in this case see C a m e r o n [ D M 75 91 89] . 

• Other operat ions on A(x): B{x) = A(x)2; 1/A(x)2; A(x)/(l - x) [so that 

bn = E ak];A(x)/(l-x)2;etc. 
k<n 

9 Similar operat ions on AE{X): BE{X) = AE{X)2\ \/AE{X)\ etc. 

• Complementa ry sequences . Those number s not in the original sequence . 
Also bn = n - an\ bn = - a n . 

T h e fol lowing t ransformations are rather m o r e interesting. 

• Exponent ia l a n d logari thmic transforms. Several versions are poss ible , 
but the usual one t ransforms a i , a 2 , a 3 , . . . into b\, b2, fr3,... v ia 

n = l " \n=l ' J 

i.e. 

l+BE(x)=oxpAE(x) . (2.8) 

There is a combinator ia l interpretat ion. For example , if an is the n u m b e r of 
connec ted labeled graphs on n nodes , M 3 6 7 1 , then bn = M l 8 9 7 , is the total 
n u m b e r of connected or d isconnected labeled graphs on n nodes . M o r e generally, 
if an is the number of connected labeled graphs wi th a certain property, then bn 

is the total number of labeled graphs wi th that property. Eq. (2.7) is Ridde l l ' s 
formula for labeled graphs (Harary and Pa lmer [HP73 8]). 
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Of course the inverse t ransformation is 

n = l * \ n = l J 

In this situation w e say that 61, b2,... is the exponential transform of a\, a2,..., 
and that a i , a 2 , . . . is the logarithmic transform of b\, b2,... . 

• T h e Euler transform. For unlabeled graphs a different pair of t ransforma

tions applies. If two sequences a\, a2, a?,,... and b\, 62? 3̂ ? • • • are related by 

0 0 0 0 1 

i + E ^ n = Il7rr^-> (2-1Q) 
n = l i=l V ; 

or equivalently 

l + B ( x ) = e x V ( j ^ ^ ) J , (2.11) 

then w e say that { 6 n } is the Euler t ransform of { a n } , and that {an} is the inverse 
Euler t ransform of {bn}. 

Calculat ions are facilitated by introducing an intermediate sequence c\, c2,. • • 
defined by 

cn = Yl dCLd > ( 2 - 12 ) 
d!|n 

or 
n - l 

c n = n 6 n - ^2 ckK-k , (2.13) 

with 

= ( 2 - 1 4 ) 

where p is the Mob ius function (see M 0 0 1 1 and Fig. M 0 5 0 0 ) . Us ing these formula 
{bn} can be obtained from { a n } , or vice versa. The cn have generat ing function 

log(l+B(x)) = y i c n — . (2.15) 
n—\ 

There are many applicat ions of this pair of t ransforms. In graph theory, if an 

is the number of connected, unlabeled graphs with some property, then bn is the 
total number of graphs (connected or not) with the same property. In this context 
(2.11) is somet imes called Riddel l ' s formula for unlabeled graphs (cf. Cadogan 
[JCT B l l 193 71] , Harary and Palmer [HP73 90]) . 
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For example , if an (n > 1) is the n u m b e r of connected unlabeled graphs wi th n 
nodes , M 1 6 5 7 : 1, 1, 2 , 6, 2 1 , . . . , then bn(n > 1) is the total number of unlabeled 
graphs wi th n nodes , M l 2 5 3 : 1, 2, 4, 11 , . . . . The intermediate sequence cn is 
M 2 6 9 1 : 1 , 3 , 7 , 2 7 , . . . . 

There are also number- theoret ic applicat ions: bn is the number of part i t ions of 
n into integer parts of which there are a\ different types of parts of size 1, a2 of 
size 2, and so on. E.g. if all an = 1, then bn is s imply the number of part i t ions 
of n into integer parts (M0663) . If an = 1 w h e n n is a p r ime and 0 w h e n n 
is compos i te , bn is the number of part i t ions of n into p r ime parts (M0265) . A n 
important example of the {bn} sequence is M 0 2 6 6 , which arises in connect ion wi th 
the Rogers -Ramanujan identities — see Andrews [Andr85] , Andrews and Baxte r 
[ A M M 96 403 89] . Andrews [Andr85] discusses a number of other number -
theoretic applicat ions, and Cameron [ D M 75 89 89] gives further applicat ions in 
other parts of mathemat ics . 

• The M o b i u s transform. If sequences a i , a2l 0 3 , . . . and 61, b2, 6 3 , . . . are 
related by 

K = Q) a d ' (2-16) 

d\n 

d\n 

where the summat ions are taken over all posit ive integers d that divide n, w e say 
that {bn} is the Mobius t ransform of {an}, and that {an} is the inverse Mobius (or 
sum-of-divisors) t ransform of {bn}. Equat ions (2.16), (2.17) are cal led the Mobius 
inversion formulae. (The sequences in (2.12) and (2.14) are related in this way.) 
Two equivalent formulat ions are 

00 00 N 

J2*nxn = ^ 2 b n T ^ - , (2.18) 
n = l n = l 

K 

n = l 

where 

1 1 
c w - E ^ - n r ^ x 

(2.20) 

p pnme 

is the R i e m a n n zeta function. 

Aga in there are many applicat ions. For combinator ia l applications see Ro ta 
[ Z F W 2 340 64] (as well as several other papers repr inted in [GeRo87]) , Bende r 
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and Go ldman [ A M M 82 789 75] , and Stanley [Stan86]. For number- theoret ic 
applicat ions see for example Hardy and Wr igh t [HWI §17.10] — the r ight-hand 
side of (2.18) is called a Lambert series. 

Examples , (i) If bn — 1 , 1 , 1 , . . . , an = number of divisors of n (M0246) . (ii) If 
bn = 1 , 0 , 0 , . . . , an = Mobius function (M0011) . (iii) If bn — n, an = Euler 
totient function (M0299) . (iv) If b2n = 0, b2n+\ = ( - l ) n 4 , then an = numbe r of 
ways of wri t ing n as a sum of two squares (M3218) . 

• The binomial transform. If ao, a\, a 2 , . . . and b0, b\,b2)... are related as 
in Eq. (2.3), w e say that {an} is the binomial t ransform of {bn}, and that {bn} is 
the inverse binomial t ransform of { a n } . Equivalently, the exponent ia l generat ing 
functions are related by 

AE(x) = exBE(x) . (2.21) 

As we saw in Sect. 2 .5 , these t ransformations arise in s tudying the differences of a 
sequence. The leading diagonal of the difference table of a sequence is the inverse 
b inomial t ransform of the sequence. 

Examples . If an — 3 n , bn = 2 n , and more generally, if an = k n , b n = (k — l ) n . 

The Bell numbers 1, 1, 2 , 5, 15, 52 , . . . (M1484) are dis t inguished by the 
property that they are shifted one p lace by the b inomial t ransform: an = bn+\ 
[BeS194]. 

• Revers ion of series. Given a sequence a\, a2, a 3 , . . . we can form a generat ing 
function 

y = x(l+ a\x + a2x2 H ) , (2.22) 

and by expressing x in te rms of y obtain a new sequence b\, b2,63,... by wri t ing 

x = y ( l - b i y - b 2 y 2 - . . - ) • (2.23) 

This process is cal led reversion of series, and explicit formulae expressing bn in 
te rms of a x , . . . , an can be found for example in [AS 1 1 6 ] , [ R C I 1 4 9 ] , [TMJ 2 73 92] . 
This t ransformation is its own inverse. For example , if the an are the Fibonacci 
numbers 1, 2, 3 , 5, 8, . . . (M0692) , the bn are 1, 2, 5, 15, 5 1 , 188, . . . (M1480) . 
It is amusing that the latter sequence is also the b inomial t ransform of the Catalan 
numbers ( M l 4 5 9 ) . A n alternative vers ion of this t ransformation is: given ao = 1, 

oo _ oo 
a i , . . . w e set ?/ = ^ Q>i%l~*~l, whose reversion is x = J ] biXl+l, p roduc ing the 

i=0 i=0 
t ransformed sequence bo = l,b\,... . 
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• Other transforms. A pair of t ransforms of the form 

can be defined whenever w e find integer arrays {CN^} and {DN^K} satisfying the 
or thogonal i ty relat ion 

J 1 ra = n , 

[ 0 m ^ n . 

Riordan ' s book [RCI] gives many such examples , including t ransforms that are 
based on Chebyshev and Legendre po lynomia l s . 

We conclude by ment ioning that the pair of t ransforms based on Stirling n u m 
bers seems to be wor th investigating further, part icular ly in the context of enumer
ating permuta t ions . In this case w e have 

n n 

an = ^2s(n,k)bk, bn = ^ 5 ( n , k)ak , (2.24) 
k=0 k=0 

where the coefficients are Stirling numbers of the first and second k inds , respec
tively (see Figs . M 4 7 3 0 , M 4 9 8 1 ; also [ R l 48 ] , [RCI 90 ] , [GKP 252] , [BeS194]). 

2.8 Methods for Computer Investigation of Sequences 

A s w e have already ment ioned, a thorough investigation of the t ransformations 
of a sequence descr ibed in the previous section is best done by computer . 

• Gf u n . A t the heart of the fol lowing techniques is an algori thm of Cabay and 
Choi [SIAC 15 243 86] that uses Pade approximat ions to take a t runcated power 
series 

co + cxx + c2x2 + • • • + c n - i x n - 1 (2.25) 

wi th rat ional coefficients, and determines a rat ional function p(x)/q(x), whe re 
p(x) and q(x) are polynomials wi th rat ional coefficients, whose Taylor series 
expans ion agrees with (2.25) and in wh ich d e g p + deg q is minimized . If d e g p + 
deg q < n — 2, w e say this is a " g o o d " representa t ion of (2.25) (for then p(x)/q(x) 
contains fewer constants than the original series) . 

The Cabay-Cho i a lgori thm is incorporated in the M a p l e c o n v e r t / r a t p o l y 
procedure . Bergeron and Plouffe [ E X P M 1 307 92] observed that this provides 
an efficient way to search for a wide class of generat ing functions for sequences. 
Given a sequence ao, a i , . . . , a n _ i , one can form the o.g.f. A{x) and e.g.f. A E ( X ) , 
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and see if either have a " g o o d " rat ional representat ion. If not, one can try again 
wi th the logarithmic derivates A'{x)/A(x) and A'E(X)/AE(X), and with many 
other t ransformed generat ing functions. In this way Bergeron and S.P. were able 
to find generat ing functions such as 1/(2 — ex) for M 2 9 5 2 . 

This work was carried m u c h further by S.P. in his thesis [Plou92] , which gives 
over 1000 generat ing functions, recurrences and formulae for the 4 5 0 0 sequences 
in a 1991 version of the present table. S o m e of these are immedia te , others can be 
proved with difficulty, but a considerable number are still only conjectural . The 
simplest of these (but not the conjectural ones) have now been incorporated in the 
table. To have included the rest, which are usually quite complicated, would have 
greatly increased the length of this book. 

The g f u n Map le package of Salvy and Z i m m e r m a n n [SaZi94] incorporates 
and greatly extends the ideas of Bergeron and S.P. With g f u n , one can (among 
m a n y other things) check very easily: 

(a) whether there is a " g o o d " rat ional function representat ion for the o.g.f. or 
e.g.f. of a sequence, or for their logar i thmic derivatives, or their reversions; 

(b) whether the generat ing function y(x) of any of these types satisfies a 
po lynomia l equat ion or a l inear differential equat ion wi th po lynomia l coefficients; 

(c) whether the coefficients of any of these generat ing functions satisfy a l inear 
recurrence with po lynomia l coefficients; 

and many other things. The package contains a number of c o m m a n d s that m a k e 
it easy to manipula te sequences and power series and to convert be tween different 
types. The s u p e r s e e k e r p rog ram described in Sect ion 2.9 makes good use of 
g f u n . 

• Look for sequences in the table that are close to the u n k n o w n sequence . 
There are a n u m b e r of ways to do this. Let a = ao, a\,..., a n _ i be the u n k n o w n 
sequence, and b = 6 0 , . . . , 6 m - i a typical sequence in the table. W e truncate 
the longer sequence so they both contain the same number of te rms, n. Then w e 
m a y ask: 

(a) W h i c h sequences in the table are closest in L\ norm, i.e. min imize 

n - l 

(b) Is there a sequence in the table such that 

\a,i-bi\ < 1 for all i l 
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Or for which |a$ — b{ \ is a constant sequence? 

(c) W h i c h sequences in the table are closest in H a m m i n g distance? (Write a 
and b as strings of decimal digits and spaces, and count the places where they 
differ.) 

(d) W h i c h sequences in the table are mos t closely correlated wi th the unknown 
sequence? I.e., wh ich max imize the squared correlat ion coefficient 

r 2 = 7 ( ^ ( a i - a ^ h - b ) ) , 
(n-l)2s2

as2

b J 
where 

^ n—1 j n— 1 

i=0 i=0 

are the m e a n and var iance of a, wi th similar definitions for b and s\. 

Notes : A m o n g other things, (a) will detect small errors in calculat ion; (b) wil l 
detect sequences whose definition differs by a constant from one in the table; (c) 
wil l detect typing errors; (d) is the mos t t ime-consuming of these tests, and will 
detect a sequence of the form a = pb + g, where b is in the table and p and q are 
constants . 

Another possible test of this type is to see if a is a subsequence of some 
sequence in the table, but w e have not found this useful. 

The remain ing tests in this section are m o r e speculative. However , once in a 
whi le they m a y find an explanat ion for a sequence that has not succumbed to any 
other test. 

• Apply the Ber l ekamp-Massey or Reed-S loane algori thms. Suppose the 
sequence takes on only a small number of different values, e.g. { 0 , 1 , 2 , 3 } . B y 
regarding the values as the e lements of a finite field (the Galois field GF(4) wou ld 
be appropriate in this case) we m a y think of the sequence as a sequence from this 
field. The Ber lekamp-Massey algor i thm is an efficient procedure for finding the 
shortest l inear recurrence wi th coefficients from the field that will genera te the 
sequence — see Ber l ekamp [Be68 Chap . 7] and Massey [PGIT 15 122 69 ] . 

(Other references that discuss this extremely useful a lgori thm are Dick inson 
et al. [PGAC 19 31 74 ] , Be r l ekamp et al. [UM 5 305 74] , Mil ls [ M O C 29 173 75] , 
Gustavson [ IBMJ 2 0 204 76] , McEl iece [McE177], M a c Wil l iams and Sloane 
[MS78 Chap . 9 ] , and Brent et al. [JAlgo 1 259 80].) This a lgori thm would 
discover for example that the sequence 

0 , 1 , 2 , 1 , 3 , 0 , 3 , 0 , 1 , 3 , 3 , 2 , 3 , 3 , 3 , 1 , 2 , 0 , 1 , 1 , 0 , 0 , . . . 
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is generated by the l inear recurrence 

an — u(an-i + a n - 2 + ttn_3) 

over OF'(4), where w e take GF(4) to consist of the e lements { 0 , 1 , C J , C J 2 } , 
with a;2 = a; + 1, and wri te 2 for a;, 3 for cu2. The Reed-S loane algori thm 
[SIAC 14 505 85] is an extension of this a lgori thm which applies w h e n the terms 
of the sequences are integers modu lo ra, for some given modulus ra. For example , 
this a lgori thm would discover that the sequence 

1 , 2 , 4 , 3 , 1 , 3 , 6 , 7 , 4 , 4 , 1 , 5 , 3 , 0 , 5 , 6 , . . . 

is p roduced by the recurrence 

an = a n _ i + 2 a n _ 2 + 3 a n _ 3 ( m o d 8) . 

• Apply a data compress ion a lgori thm. Feed the sequence to a data com
pression algori thm, such as the Z iv-Lempel algori thm as implemented in the Unix 
commands c o m p r e s s or g z i p . 

If the sequence is compressed to a m u c h greater extent than a comparab le 
r andom sequence of the same length would be, there is some structure present 
that can be recovered by examining the compress ion algori thm (see for example 
[BCW90]) . 

For example , g z i p compresses M 0 0 0 1 from 150 characters to 36 characters , 
whereas a r andom binary sequence of the same length typically is compressed 
only to 60 bits. So if a 150-character binary sequence is compressed to (say) 45 
bits or less, one can be sure it has some concealed structure. 

It would be wor th running this test on any stubborn sequence which contains 
only a l imited set of symbols . B y exper iment ing with r andom sequences of the 
same length and conta in ing/ the same symbols , one can de termine their average 
compressibil i ty. If the s tubborn sequence is compressed to a greater degree than 
this then it has some h idden structure. 

• C o m p u t e the Fourier transform of the sequence . A n article by Lox ton 
[Loxt89] demonstra tes that the Fourier transform of a sequence can reveal m u c h 
about how it is generated. This is a topic that deserves further investigation. 

2.9 The On-Line Versions of the Encyclopedia 

There are two on-l ine versions of the Encyclopedia that can be accessed via 
electronic mai l . The first is a s imple look-up service, whi le the second tries very 
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hard to find an explanat ion for a sequence. Both make use of the latest and mos t 
up-to-date version of the main table. 

To use the s imple look-up service, send emai l to 

s e q u e n c e s @ r e s e a r c h . a t t . c o m 

containing lines of the form 

lookup 5 14 42 132 429 

There m a y be up to five such lines in a message . The p rogram will automatical ly 
inform you of the first seven sequences in the table that match each line. If there 
are no " l o o k u p " lines, you will be sent an instruction file. 

Notes . W h e n submit t ing a sequence, separate the terms by spaces (not commas ) . 
It m a y be advisable to omit the initial term, since there are often different opinions 
about how a sequence should begin. (Does one start count ing graphs , say, at 0 
nodes or at 1 node? D o the Lucas number s begin 1, 3 , 4, 7, 11 , . . . or 2, 1, 3 , 4, 
7, 11 , . . . ? ) Omi t all minus signs, since they have been omit ted from the table. If 
you receive seven matches to a sequence, try again giving more terms. For m o r e 
details, see [Sloa94] . 

The second server not only looks up the sequence in the table, it also tries hard 
to find an explanat ion for it, using many of the tricks descr ibed in this chapter (and 
possibly others — at the t ime of wri t ing the p rog ram is still be ing expanded) . To 
use this m o r e powerful p rogram, send emai l to 

s u p e r s e e k e r @ r e s e a r c h . a t t . c o m 

containing a line of the form 

lookup 1 2 4 6 10 14 20 26 36 46 60 74 94 114 140 166 

The p rogram will apply many tests, and report any potential ly useful informat ion 
it discovers. 

Notes . T h e word " l o o k u p " should appear only once in the message . The terms of 
the sequence should be separated by spaces (not commas) . For this p rogram the 
sequence should be given from the beginning. Minus signs should be included, 
since mos t of the p rograms will m a k e use of them. If possible , give from 10 to 2 0 
terms. If you receive seven matches from the table, try again giving m o r e te rms. 

2.10 The Floppy Disk 

A floppy disk con ta in ing every s e q u e n c e in the tab le ( a l though n o t the i r 
descript ions) is available from the publisher. Please contact Academic Press at 

mailto:sequences@research.att.com
mailto:superseeker@research.att.com
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1 - 8 0 0 - 3 2 1 - 5 0 6 8 for information regarding the floppy disk to accompany The 
Encyclopedia of Integer Sequences. P lease indicate desired format by referring 
to the ISBN for Macintosh (0-12-558631-0) or for I B M / M S D O S (0-12-558632-9). 

The disk contains a l ine such as 

M[1916] := [A6226 , 1 , 2, 9, 1 8 , 1 1 8 ] : 

for each sequence. The first number gives the sequence number in this book, 
the second gives the absolute identification number for the sequence, and the 
remain ing numbers are the sequence itself. 

This disk will enable readers to s tudy the sequences in their own computers . 
Of course the book will still be needed for the descript ions of the sequences and 
the references. 



Chapter 3 

Further Topics 
3.1 Applications 

We begin by descr ibing some typical ways in which the 1973 book [HIS] has 
been used, as wel l as some applicat ions of the sequence servers men t ioned in 
Section 2.9. (Even though at the t ime of wri t ing the latter have been in exis tence 
for only a few months , there have already been some interest ing applicat ions) . It 
is to be expected that the present book will find similar applicat ions. 

The mos t impor tant way the table is used is in discovering whether someone has 
already worked on your p rob lem. Discrete mathemat ics has g rown exponent ia l ly 
over the last thirty years , and so there is a good chance that someone has already 
looked at the same problem, or an equivalent one . In this respect the book serves 
as an index, or field guide, to a b road spect rum of mathemat ics . If the answers to 
the first few special cases of a p rob lem can be descr ibed by integers, and someone 
has considered the p rob lem wor th s tudying, there is a good chance you wil l find 
the sequence of numbers in this book. Of course if not, and if s u p e r s e e k e r 
can ' t do anything wi th it, you should send in the sequence so that it can be added 
to the table — see Sect. 2.2 for instructions. Apar t from anything else, this stakes 
out your c laim to the problem! But , m o r e important , you will be per forming a 
service to the scientific communi ty . 

As with any dict ionary (and as predic ted by the epigraph to Chapter 1), mos t 
such successful uses go unrecorded. The reader s imply stops work ing on the 
prob lem, as soon as he or she has been poin ted to the appropriate p lace in the 
li terature. 

In many cases the book has led to mathemat ica l discoveries. The fol lowing 
stories are typical . 

• R. L. G r a h a m and D . H. L e h m e r were investigating the pe rmanen t P n of 
Schur ' s matr ix, the n x n mat r ix (a^k), 0 < j, k < n — 1, where a = e 2 7 r l / / n , and 
found that the initial values P i , P 3 , P 5 , . . . were 

1 , - 3 , - 5 , - 1 0 5 , 8 1 , . . . 

2 9 
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(Pn is 0 if n is even). As it happened, this sequence (M2509) was in the Supplement 
[Supp74] to the 1973 book, and N . J. A. S. was able to refer Graham and Lehmer 
to an earlier paper by D . H. Lehmer , where the same sequence had arisen! This 
provided an unexpected connect ion wi th circulant matr ices [JAuMS A 2 1 496 76 ] . 

• Extract from a letter about the 1973 book: "After reading about your book in 
Scientific American, I ordered a copy. Several of m y friends looked at the book and 
stated they thought it was interesting but doubted its usefulness. A few days later 
I was a t tempt ing to determine the number of spanning trees on an n by m lattice. 
In work ing out the 2 by m case, I de termined the first numbers in the sequence 
to be 1, 4 , 15, 56 . Not ic ing that both sequences N o . 1420 and 1421 started this 
way, I worked out another term, 209 ; thus sequence N o . 1420 seemed to fit. After 
m u c h thought I was able to establish a compl ica ted recursion relat ionship which I 
was later able to show was equivalent to the recursion you gave for N o . 1420. . . . 
In closing I wou ld like to say that your book has already proved to be wor thwhi le 
to m e since it p rovided guidel ines for organizing m y thoughts on this p rob lem and 
suggested a hypothesis for the next te rm of the sequence. I ' m sold!" (Alamogordo , 
N e w Mexico) . 

• Whi l e investigating a p rob lem arising from cellular radio, Mira Bernstein, 
Paul Wr igh t and N . J. A. S. were led to consider the number of sublattices of index 
n of the p lanar hexagonal lattice. For n — 1,2, 3 , . . . they calculated that these 
numbers were 1 , 1 , 2 , 3 , 2 , 3 , 3 , 5 , . . . . To their surprise, the table revealed that this 
sequence, M 0 4 2 0 , had arisen in 1973 in an apparently totally different context, 
that of enumera t ing m a p s on a torus (Altshuler [ D M 4 201 73]) , and supplied 
a recurrence that they had overlooked. (However, it is only fair to add that the 
earlier paper did not find the elegant exact formula for the n t h term that is given 
in [ B S W 9 4 ] . There is also an error in the values given in the earlier paper: x(16) 
should be 9, not 16.) 

• C. L. Mal lows was interested in determining the number of statistical mode l s 
with n factors, in part icular l inear hierarchical mode ls that allow 2-way interac
t ions. For n = 1 , 2 , . . . he found the numbers of such models to be 

2 , 4 , 8 , 1 9 , 5 3 , 2 0 9 . 

This sequence was not at that t ime in the table, but s u p e r s e e k e r (see Sect. 2.9) 
pointed out that these numbers agreed with the partial sums of M l 2 5 3 , the number 
of graphs on n nodes . Wi th this hint, Mal lows was instantly able to show that this 
explained his sequence (which is now M l 153). 

• R. K. Guy and W. O. J. Moser [GuMo94] report a successful application 
of s u p e r s e e k e r in finding a recurrence for the number of subsequences of 
[ 1 , 2 , . . . , n] in which every odd number has at least one even neighbor. The first 
try with the p rogram was unsuccessful , because of an error in one of their te rms , 
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but when the corrected sequence 

1 , 1 , 3 , 5 , 1 1 , 1 7 , 3 9 , 6 1 , 1 3 9 , . . . 

(now M 2 4 8 0 ) was submitted, s u p e r s e e k e r used g f u n to find the elegant 
generat ing function 

1 + x 4- 2x3 

l - 3 x 2 - 2x4 ' 

• Inspect ion of the log file for the sequence servers on March 28 , 1994 shows 
that at least one high-school s tudent used the p rogram to identify a sequence 
(M2638) for her homework . 

Another impor tant application of the book is to suggest poss ible connect ions 
be tween sequences arising in different areas, as in the Mal lows story above. Here 
is a typical (a l though ul t imately unsuccessful) example . 

• The d imens ions of the spaces of primit ive Vassiliev knot invariants of orders 
1 , . . . , 9 form the sequence 

1 , 1 , 1 , 2 , 3 , 5 , 8 , 1 2 , 1 8 

the next te rm being present ly unknown (see B i rman [BAMS 28 281 93] , Bar -Natan 
[BarN94]) . This sequence coincides wi th the beginning of M 0 6 8 7 , which gives 
the number of ways of arranging n pennies in rows of cont iguous pennies , each 
touching two in the row below. Alas , further investigation by D. Bar-Natan has 
shown that next te rm in the former sequence is at least 27 , and so these sequences 
are in fact not the same. 

• As already ment ioned in Sect. 2 .8 , S.P.'s thesis [Plou92] contains m a n y 
conjectures about possible generat ing functions. For example , M 2 4 0 1 , the size of 
the smallest square into which one can pack squares of sizes 1 , 2 , . . . , n, appeared 
to have generat ing function 

oo 

(1 - z)~\l - z2) z2m+1)(l - z2mYx , 
771=4 

which agreed with the 17 values k n o w n at the t ime [UPG D 5 ] . This p rompted 
R. K. Guy [rkg] to calculate some further te rms, and to show that in fact this 
generat ing function is not correct. A t present no general formula is k n o w n for this 
sequence. 

For an example of a conjectured generat ing function (for M2306) that turned 
out to be correct , see Al louche et al. [ A A B B ] . 
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3.2 History 

I 1 started collect ing sequences in 1965 when I was a graduate student at Cornel l 
University. I had run across several sequences whose asymptot ic behavior I 
needed to determine, so I was hop ing to find recurrences for them. Al though John 
Riordan ' s book [ R l ] was full of sequences , the ones I was interested in did not 
seem to be there. Or were they? It was hard to tell, certainly some very similar 
sequences were ment ioned. So I started collecting sequences on punched cards. 
Almos t thirty years later, the collect ion is still growing (al though it is no longer on 
punched cards.) 

Over the course of several years I systematical ly searched through all the books 
and journals in the Cornel l mathemat ics library, and then the Bell Labs library, 
when I jo ined the Labs in 1969. A visit to Brown University, wi th its marve lous 
collect ion of older mathemat ics books and journals , filled in many gaps. I never did 
find the sequences I was originally looking for, a l though of course they are now in 
the table (M4558 was the one I was mos t interested in: 0 , 1 , 8 , 7 8 , 9 4 4 , 1 3 8 0 0 , . . . 
a very familiar sequence! It essentially gives the average height of a rooted labeled 
tree.) 

The first book [HIS] was finally publ ished by Academic Press in 1973, and 
a supplement [Supp74] was issued a year later. Over the next fifteen years new 
material poured in, and by 1990 over a cubic meter of letters, articles, preprints , 
postcards , etc., had accumula ted in m y office. I m a d e one at tempt to revise the 
book in 1980, with the he lp of two summer students, B o b H i n m a n and Tray Peck, 
and managed to transfer the 1973 table from punched cards to magnet ic disk, and 
started process ing the new mater ial . Bu t at the end of that summer other projects 
intervened (cf. [MS78] , [SPLAG]) . Ten years later the amount of mater ia l wai t ing 
to be processed was overwhelming . 

Fortunately S.P. wrote to m e in 1991 , offering to he lp with a new edition, and 
this provided the s t imulus that, four years later, has p roduced the new book. It 
very nearly never happened! 

3.3 Differences from the 1973 Book 

• Size: There are now 5488 sequences , compared wi th 2372 in [HIS] . 

• Format : In [HIS] , every sequence was normal ized so as to begin 1, n, wi th 
2 < n < 999 , an initial 1 be ing added as a marker if necessary. N o w the sequence 
can begin in any way, subject only to Rule 3 of Sect. 1.5. 

! The first person seems appropriate here (N.J.A.S.). 
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• The descript ions are m u c h more informative. M a n y generat ing functions 
have been included. O n e of the benefits of the transi t ion from punched cards to 
magnet ic disk has been an enlarged character set. Before, only upper case letters 
could be used; now, all s tandard mathemat ica l symbols are available. 

• Al l k n o w n errors in [HIS] have been corrected. In a lmost every case these 
were errors in the source mater ia l , no t in transcription. S o m e erroneous or wor th
less sequences have been omit ted. 

• There is also a technical change . In the older mathemat ica l l i terature 1 
was regarded as a p r ime number , whereas today it is not. This has necessi tated 
changes to a few sequences . M 3 3 5 2 for example now begins 4 , 9 , 1 1 , . . . ra ther 
than 2 , 4 , 9 , 1 1 , . . . as in [HIS] . 

3.4 Future Plans 

• The table should be modified so as to include minus signs. Unfortunately to 
do this thoroughly would require re -examining thousands of sequences , and this 
book has already been delayed long enough. 

• It would be nice to have a series of essays , one for each family of sequences 
(Boolean functions, part i t ions, graphs , lattices, etc.) , showing how the sequences 
are related to each other and which are fundamental . This would clarify the 
sequences that one should concentrate on when looking for generat ing functions, 
finding m o r e te rms, and so on. The late Victor Meal ly spent a great deal of t ime 
on such a project , and every square cent imeter of his copy of [HIS] , now in the 
Strens col lect ion of the Universi ty of Calgary library, is annotated wi th cross-
references be tween sequences , tables , d iagrams , and so on — in other words a 
greatly expanded version of the Figures in the present book. It wou ld be wor thwhi le 
doing this in a systematic way. Such commenta r ies could easily fill a compan ion 
volume. 

• It would also be useful to classify the sequences into various categories , a 
mult iple classification that would indicate: 

• subject (graphs, part i t ions, etc.) , 

• type (enumerative, number- theore t ic , dependent on base 10 representat ion, 
frivolous, etc.), and 

• m e t h o d of generat ion (ranging from "explici t formula" , " recurrence" , etc., 
to " the next te rm not known") . 

It is surprisingly difficult to give precise definitions for some of these classes — 
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there are explicit formulae for the n t h pr ime, for instance, and the mos t intractable 
enumera t ion p rob lem can be encoded into a recurrence if one defines enough 
variables (see for example [JCT 5 135 68]) . 

There are however a number of mathemat ica l ly well-defined classes of se
quences , for instance general ized per iodic sequences (MacGregor [ A M M 87 90 
80]) , ^ -automat ic sequences (Cobham [MST 3 186 69; 6 164 72]) , ^-regular se
quences (Al louche and Shallit [TCS 98 163 92]) , differentiably finite sequences 
(Stanley [EJC 1 175 80]) , construct ibly differentiably finite sequences (Bergeron 
and Reutenauer [EJC 11 501 90]) , etc. , which could be used as a basis for a m o r e 
r igorous classification. We should also ment ion the recent studies of integer se
quences that have been m a d e by Lisonek [Liso93] , Sattler [Satt94] and Theoret 
[Theo94] , [Theo95] . 

• There are many other features that could be added to the table, such as: 

• Maple , Macsyma , Mathemat ica , Pari , etc. procedures to generate as m a n y 
terms of the sequence as desired (if available), or 

• a comple te list of all k n o w n terms (if it is difficult to generate) ; 

• generat ing functions or recurrences in every case for which they are known; 

• a descript ion of the asymptot ic behavior of the sequence, and other inter
est ing mathemat ica l propert ies; 

• full details of the source for each sequence (author, title, etc.) , or even, 

• the full text of the article or an extract from the book where the sequence 
appeared. 

Finally, wha t about a table of arrays? M u c h remains to be done! 
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M0005 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 

T H E T A B L E O F S E Q U E N C E S 

SEQUENCES OF 0 ' s A N D l ' s 

M0000 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

The zero sequence. [0,1; A0004] 

M0001 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0 

A simple periodic sequence. [0,1; A0035] 

M0002 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

The characteristic function of 0: a(n) = 0". [0,1; A0007] 

M0003 1, 1, 1, 1,1, 1,1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1,1, 1, 1, 1, 1 

The simplest sequence of positive numbers: the all l ' s sequence. [0,1; A0012] 

SEQUENCES BEGINNING . . ., 2, 0, . . . 

M0004 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

The first sequence in the main table. [0,1; A0038] 

M0005 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6 

Theta series of diamond lattice with respect to mid-point of edge. Ref JMP 28 1653 87. 
[0,4; A5926] 
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