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Preface

In spite of the large number of published mathematical tables, until the appear-
ance of A Handbook of Integer Sequences (HIS) in 1973 there was no table of
sequences of integers. Thus someone coming across the sequence 1, 1, 2, 5, 15,
52, 203, 877, 4140, ..., for example, would have had difficulty in finding out
that these are the Bell numbers, that they have been extensively studied, and that
they can be generated by expanding e¢"! in powers of x. The 1973 book remedied
this situation to a certain extent, and the Encyclopedia of Integer Sequences is a
greatly expanded version of that book. The main table now contains 5488
sequences of integers (compared with 2372 in the first book), collected from all
branches of mathematics and science. The sequences are arranged in numerical
order, and for each one a brief description and a reference are given. Figures inter-
spersed throughout the table illustrate the most important sequences. The first part
of the book describes how to use the table and gives methods for analyzing
unknown sequences.

Who will use this book? Anyone who has ever been confronted with a strange
sequence, whether in an intelligence test in high school, e.g.,

1,11,21, 1211, 111221, 312211, 13112221, . ..
(guess!!), or in solving a mathematical problem, e.g.,
1,1,2,5,14,42, 132,429, 1430, 4862, . . .
(the Catalan numbers), or from a counting problem, e.g.,
1,1,2,4,9, 20,48, 115,286, 719, . ..
(the number of rooted trees with n nodes), or in computer science, e.g.,
0,1,3,59,11,14,17,25,27, . ..
(the number of comparisons needed to sort n elements by list merging), or in

physics, e.g.,
1, 6, 30, 138, 606, 2586, . ..

For many more terms and the explanation, see the main table.

vii



viii PREFACE
(susceptibility coefficients for the planar hexagonal lattice?), or in chemistry, e.g.,
1,1,4,8,22,51, 136, 335, 871, 2217, . ..

(the number of alkyl derivatives of benzene with n =6, 7, . . . carbon atoms), or
in electrical engineering, e.g.,

3,7,46, 4436, 134281216, . ..

(the number of Boolean functions of n variables), will find this encyclopedia
useful.

If you encounter an integer sequence at work or at play and you want to find
out if anyone has ever come across it before and, if so, how it is generated, then
this is the book you need!

In addition to identifying integer sequences, the Encyclopedia will serve as
an index to the literature for locating references on a particular problem and for
quickly finding numbers like the number of partitions of 30, the 18th Catalan
number, the expansion of © to 60 decimal places, or the number of possible
chess games after 8 moves. It might also be useful to have around when the first
signals arrive from Betelgeuse (sequence M5318, for example, would be a
friendly beginning).

Some quotations from letters will show the diversity and enthusiasm of read-
ers of the 1973 book. We expect the new book will find even wider applications,
and look forward to hearing from readers who have used it successfully.

“I recently had the occasion to look for a sequence in your book. It wasn’t
there. I tried the sequence of first differences. It was there and pointed me in
the direction of the literature. Enchanting” (Herbert S. Wilf, University of
Pennsylvania).

“I also found N. J. A. Sloane’s A Handbook of Integer Sequences to be an
invaluable tool. I shall say no more about this marvelous reference except that
every recreational mathematician should buy a copy forthwith” (Martin
Gardner, Scientific American, July 1974).

2Also called the triangular lattice.
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“Incomparable, eccentric, yet very useful. Contains thousands of ‘well-
defined and interesting’ infinite sequences together with references for each.
Sequences are arranged lexicographically and (to minimize errors) typeset from
computer tape. If you ever wondered what comes after 1, 2, 4, 8, 17, 35, 71, ...,
this is the place to look it up” (Lynn A. Steen, Telegraphic Review, American
Mathematical Monthly, April 1974).

Nontechnical readers wrote to bless us, to speak of reading the book “cover to
cover,” or to remark that it was getting a great deal of use to the detriment of
household chores and so on. Specialists in various fields had other tales to tell.

Anthony G. Shannon, an Australian combinatorial mathematician, wrote: “I
must say how impressed I am with the book and already I am insisting that my
students know their way around it just as with classics such as Abramowitz and
Stegun.”

Researchers wrote: “Our process of discovery consisted of generating these
sequences and then identifying them with the aid of Sloane’s Handbook of
Integer Sequences” (J. M. Borwein, P. B. Borwein, and K. Dilcher, American
Mathematical Monthly, October 1989).

Allen J. Schwenk, a graph theorist in Maryland wrote: “I thought I had some-
thing new until your book sent me to the Riordan reference, where I found 80%
of my results and so I abandoned the problem.”

We received letters describing the usefulness of the Handbook from such
diverse readers as: a German geophysicist, a West Virginian astronomer, various
graduate students, physicists, and even an epistemologist.

Finally, Harvey J. Hindin, writing from New York concluded a letter by say-
ing:
“There’s the Old Testament, the New Testament, and the Handbook of
Integer Sequences.”






Abbreviations

Abbreviations for the references are listed in the bibliography. References to journals
give volume, page number, year.

a(n) nth term of sequence
A(z) generating function for sequence, u‘sually the or-
dinary generating function A(z) = > anz",

occasionally the exponential generating function
Agp(z) =" anz™/n!

AND logical “AND”, sometimes applied to binary repre-
sentations of numbers

B, Bernoulli number (see Fig. M4189)
b.c.c. body-centered cubic lattice (see [SPLAG 116])
binomial transform of sequencs ao, a1, - . . is sequence by, by, . . . where
n
"3 i)
C(n)or Cyn nth Catalan number (see Fig. M1459)
C(n, k) or (Z) binomial coefficient (see Fig. M1645)
E.gf. exponential generating function
Ag(z) =) anz™/n!
Euler transform of sequence ao, a1, . .. is sequence by, b, . .. where

oo fe o)
n J 1
;anx = g (I—T)b"
expz e

F(n)or Fp nth Fibonacci number (see Fig. M0692)

Xi



Xii

p(n) or pn

Ref
Rev.e.g.f.
Rev.o.g.f.
w.IL.L

XOR

ABBREVIATIONS

usually nth prime, occasionally nth partition number,
but in latter case always identified as such

a prime or prime power

reference(s)

reversion of exponential generating function
reversion of ordinary generating function
with respect to

logical “EXCLUSIVE OR”, usually applied to binary
representations of numbers

n-dimensional laminated lattice (see [SPLAG,
Chap. 6])

Mobius function (see M0011)

ratio of circumference of circle to diameter (see
Fig. M2218)

a product, usually from 1 (or 0) to infinity, unless
indicated otherwise

sum of divisors of n (see M2329)

a sum, usually from O (or 1) to infinity, unless indi-
cated otherwise

the golden ratio (1 + v/5)/2 (see M4046)
Euler totient function (see Fig. M0500)
exponentiation

factorial symbol: 0! = 1,n! =1.23.---.n,n > 1
(see Fig. M4730)

number
largest integer not exceeding z

smallest integer not less than x



ABBREVIATIONS

an

f.c.c.
g.c.d.
G.f.

h.c.p.
l.c.m.

Lgde.gf.

Lgd.o.gf.

Mobius transformation

multiplicative encoding

O.gf.
OR

xiii

hypergeomietric series (see [Slat66]):

mEn (1,72, oo, Pm]; [81,82,- -+, 8] T)

n)k k! '

.\ (r)i(ra)e - ()i T
£t (51)k - (s

where (r)o = L, (Mg =r(r+1)---(r+k—1),
fork=1,2,...

face-centered cubic lattice (see [SPLAG 112))
greatest common divisor

generating function, usually the ordinary generating
function A(z)

hexagonal close packing (see [SPLAG 113])
least common multiple

logarithmic derivative of exponential generating
function

logarithmic derivative of ordinary generating
function

of sequence ai, ay, . . . is sequence b, by, . . ., where
n
b, = E m 7 a4 ,
d|n .

and p(n) is the Mobius function M0011

of a triangular array {¢(n,k) > 0;n =0,1,... and
0 < k < n} is the sequence whose nth term is

n

t(n,k)
[I#E57
k=0

whose p1 = 2, p, = 3, ... are the primes

either a typical subscript , as in M0705: “a(n) =
a(n — 1) + 2a(n — 3)”, or a typical term in the
sequence, as in M0641: “6n — 1, 6n + 1 are twin
primes”’

ordinary generating function A(z)

logical “OR”, usually applied to binary representa-
tions of numbers

a prime






Chapter 1

Description of the Book

It is the fate of those who toil at the lower employments of life, to be driven
rather by the fear of evil, than attracted by the prospect of good; to be exposed to
censure, without hope of praise; to be disgraced by miscarriage, or punished for
neglect, where success would have been without applause, and diligence without
reward.

Among these unhappy mortals is the writer of dictionaries; whom mankind
have considered, not as the pupil, but the slave of science, the pionier of literature,
doomed only to remove rubbish and clear obstructions from the paths of Learning
and Genius, who press forward to conquest and glory, without bestowing a smile
on the humble drudge that facilitates their progress. Every other authour may
aspire to praise; the lexicographer can only hope to escape reproach, and even
this negative recompense has yet been granted to very few.

Samuel Johnson, Preface to the “Dictionary,” 1755

This epigraph, copied from the 1973 book, still applies!

1.1 Description of a Typical Entry

The main table is a list of about 5350 sequences of integers. A typical entry
is:
M14841,1,2,5,15,52,203,877,4140,21147,115975,678570,
4213597,27644437,190899322,1382958545,10480142147,
82864869804,682076806159,5832742205057
Bell or exponential numbers: a(n + 1) = Za(k)C(n, k). See Fig M4981. Ref
MOC 16 418 62. AMM 71 498 64. PSPM 19 172 71. GO71. [0,3; A0110,
NO0585]

E.gf: exp(e® — 1)

and consists of the following items:
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M1484 The sequence identification number in this book

1,1,2,5,15,52,...  The sequence itself

Bell or exponential Name or descriptive phrase

numbers

a(n +1) A recurrence: a(n) is the nth term, C(n, k)

=Y a(k)C(n, k) is a binomial coefficient, and the sum is over
the natural range of the dummy variable, in this
caseover k =0,1,...,n

See Fig M4981 Further information will be found in the figure
accompanying sequence M4981

Ref References

MOC 16 418 62 Mathematics of Computation, vol. 16, p. 418,
1962

AMM 71 498 64 American Mathematical Monthly, vol. 71,
p. 498, 1964
For other references, see the bibliography

0,3 The offset [inside square brackets]: the first
number, 0, indicates that the first term given is
a(0), and the second number, 3, that the third
term of the sequence is the first that exceeds 1
(the latter is used to determine the position of
the sequence in the lexicographic order in the
table)

A0110 Absolute identification number for the sequence

NO585 (If present) the identification number of the se-
quence in the 1973 book [HIS]

E.g.f. Further information about the sequence (typi-

cally a generating function or recurrence) may
be displayed following the sequence; in this
case “E.g.f.” indicates an exponential generat-
ing function — see Section 2.4.

We have attempted to give the simplest possible descriptions. In the descrip-
tions, phrases such as “The number of” or “The number of distinct” have usually
been omitted. Since there are often several ways to interpret “distinct”, there may
be more than one sequence with the same name. The principal sequences are
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described in detail, while less information is given about subsiduary ones. The
indices are usually 0,1,2,... or 1,2,3, ..., or sometimes the primes 2,3,5,....
The first number in square brackets at the end of the description gives the initial
index. -

1.2 Arrangement of Table

The entries are arranged in lexicographic order, so that sequences beginning
2, 3, ... come before those beginning 2, 4, ..., etc. Any initial 0’s and 1’s are
ignored when doing this.

1.3 Number of Terms Given

Whenever possible enough terms are given to fill two lines. If fewer terms
are given it is because either no one knows the next term (as in sequences M0219,
MO0223, M0233, M0240, M0582, M5482, for example), or because although it
would be straightforward to calculate the next term, no one has taken the trouble
to do so (as in sequences M0115, M0163, M0406, M0686, M0704, M5485, etc.).
'We encourage every reader to pick a sequence, extend it, and send the results to the
first author, whose address is given in Section 2.2. Of course some sequences are
known to be hard to extend: see Fig. M2051. The current status of any sequence
can be found via the email servers mentioned in Section 2.9.

1.4 References

To conserve space, journal references are extremely abbreviated. They usually
give the exact page on which the sequence may be found, but neither the author
nor the title of the article. To find out more the reader must go to a library; to get
the most out of this book, it should be used in conjunction with a library.

Journal references usually give volume, page, and year, in that order. (See
the example at beginning of this chapter.) Years after 1899 are abbreviated, by
dropping the 19. Earlier years are not abbreviated. Sometimes to avoid ambiguity
we use the more expanded form of: journal name (series number), volume number
(issue number), page number, year.

References to books give volume (if any) and page. (See the example at the
beginning of this chapter.)

The references do not attempt to give the discoverer of a sequence, but rather
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the most extensive table of the sequence that has been published.

In most cases the sequence will be found on the page cited. In some instances,
however, for instance when we have not seen the article (if it is in an obscure
conference proceedings, or more often because the sequence was taken from a
pre-publication version) the reference is to the first page of the article. Our policy
has been to include all interesting sequences, no matter how obscure the reference.
In a few cases the reference does not describe the sequence itself but only a
closely-related one.

1.5 What Sequences Are Included?

To be included, a sequence must satisfy the following rules (although excep-
tions have been made to each of them).

Rule 1. The sequence must consist of nonnegative integers.
Sequences with varying signs have been replaced by their absolute values.

Interesting sequences of fractions have been entered by numerators and de-
nominators separately.

Arrays have been entered by rows, columns or diagonals, as appropriate, and
in some cases by the multiplicative representation described in Fig. M1722.

Some sequences of real numbers have been replaced by their integer parts,
others by the nearest integers.

The only genuine exceptions to Rule 1 are sequences such as M0728, M1551,
which are integral for a considerable number of terms although eventually becom-
ing nonintegral.

Rule 2. The sequence must be infinite.

Exceptions have been made to this rule for certain important number-theoretic
sequences, such as Euler’s idoneal (or suitable) numbers, M0476. Many se-
quences, such as the Mersemne primes, M0672, which are not yet known to be
infinite, have been given the benefit of the doubt.

Rule 3. The first nontrivial term in the sequence, i.e. the first that exceeds 1,
must be between 2 and 999.
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The position of the sequence in the lexicographic order in the table is determined
by the terms of the sequence beginning at this point.

The artificial sequences MO004 and M5487 mark the boundaries of the table.

Rule 3 implicitly excludes sequences consisting of only 0’s and 1’s. However,
for technical reasons related to the sequence transformations discussed in Sect. 2.7,
afew 0, 1 sequences have been included. They appear at the beginning of the main
table.

Rule 4. The sequence must be well-defined and interesting. Ideally it should
have appeared somewhere in the scientific literature, although there are many
exceptions to this. Enough terms must be known to distinguish the sequence from
its neighbors in the table, although one or two exceptions to this have been made
for especially important sequences.

The selection has inevitably been subjective, but the goal has been to include a
broad variety of sequences and as many as possible.

1.6 The Figures

The figures interspersed through the table give further information about certain
sequences. Our aim, not fully achieved, was that taken together the figures and the
table entries would give at least a brief description of the properties of the most
important sequences. By combining the entry for the subfactorial or rencontres
numbers, M1937, for instance, with the information from Fig. M1937, one can
obtain a definition, exact formula, generating function and a recurrence for these
numbers.

The figures serve two other purposes. One is to provide a short discussion
of certain especially interesting families of sequences (such as “self-generating”
sequences, Fig. M0436; famous hard sequences, Fig. M2051; or our favorite
sequences, Fig. M2629).

The other is to display the most important arrays of numbers and the sequences
to which they give rise — see Fig. M 1645, for example, which describes some of
the many sequences connected with the diagonals and even the rows of Pascal’s
triangle. These figures compensate to a certain extent for the fact that the book
does not catalogue arrays of numbers.






Chapter 2

How to Handle a Strange
Sequence

We begin with tests that can be done “by hand”, then give tests needing a
computer, and end by describing two on-line versions of the Encyclopedia that can
be accessed via electronic mail.

2.1 How to See If a SequenceIs in the Table

Obtain as many terms of the sequence as possible. To look it up in the table,
first omit all minus signs. Then find the first nontrivial term in the sequence, i.e.
the first that exceeds 1. The terms beginning at this point determine where the
sequence is placed in the lexicographic order in the table.

For example, to locate 1, 1,1, 1, 1,2, 1,2,3,2, 3, ..., the underlined number
is the first nontrivial term, so this sequence should be looked up in the table at 2,
1,2,3,2,3,...(itis MO112).

For handling arrays, rationals or real numbers, see Section 1.5.

2.2 1If the Sequence Is Not in the Table

e Try examining the differences between terms, as discussed in Section 2.5,
and look for a pattern.

e Try transforming the sequence in some of the ways described in Section 2.7,
and see if the transformed sequence is in the table.

e Try the further methods of attack that are mentioned in Sections 2.6 and
2.8.

e Send it by electronic mail to superseeker@research.att.com, as
described in Section 2.9. This program automatically applies many of the

7
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tests described in this chapter.

o If all these methods fail, and it seems that the sequence is neither in the
Encyclopedia nor has a simple explanation, please send the sequence and
anything that is known about it, including appropriate references, to the first
author! for possible inclusion in the table.

2.3 Finding the Next Term
Suppose we are given the first few terms
apg a; a; a3 a4 G5 Qg

of a sequence, and would like to find a rule or explanation for it. If nothing is
known about the history or provenance of the sequence, nothing can be said, and
any continuation is possible. (Any n + 1 points can be fitted by an nth degree
polynomial.)

But the sequences normally encountered, and those in this book, are distin-
guished in that they have been produced in some intelligent and systematic way.
Occasionally such sequences have a simple explanation, and if so, the methods
discussed in this chapter may help to find it. These methods can be divided roughly
into two classes: those which look for a systematic way of generating the nth term
an, from the terms ay, ..., an—; before it, for instance by a recurrence such as
Qn = Gp—1 + an—_y, i.e. methods which seek an internal explanation; and those
which look for a systematic way of going from n to a,, e.g. a, is the number
of divisors of n, or the number of trees with n nodes, or the nth prime number,
i.e. methods which seek an external explanation. The methods in Sect. 2.5 and
some of those in Sect. 2.6 are useful for attempting to discover internal explana-
tions. External explanations are harder to find, although the transformations in
Sect. 2.7 are of some help, in that they may reveal that the unknown sequence is a
transformation of a sequence that has already been studied in some other context.

In spite of the warning given at the beginning of this section, in practice it is
usually clear when the correct explanation for a sequence has been found. “Oh
yes, of course!”, one says.

There is an extensive literature dealing with the mathematical problems of defin-
ing the complexity of sequences. We will not discuss this subject here, but simply
refer the reader to the literature: see for example Feder et al. [PGIT 38 1258 92],

'Address: N.J.A. Sloane, Room 2C-376, Mathematical Sciences Research Center,
AT&T Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974 USA,; electronic mail:
njas@research.att.com; fax: 908 582-3340.
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Fine [IC 16 331 70], [FI1], Martin-Lof [IC 9 602 66], Ziv [Capo90 366], Lempel
and Ziv [PGIT 22 75 76], as well as a number of other papers by Ziv and his
collaborators that have appeared in [PGIT].

2.4 Recurrences and Generating Functions

Let the sequence be ag, a1, az, as, . . . . Is there a systematic way of getting the
nth term a,, from the preceding terms a,,—1, a3, . . .7 A rule for doing this, such
as a, = ai—1 — Gn_2, is called a recurrence, and of course provides a method for
getting as many terms of the sequence as desired.

When studying sequences and recurrences it is often convenient to represent
the sequence by a power series such as

Alz) = ao + a1z + apz? + azz® + -,

which is called its (ordinary) generating function (o.g.f. or simply g.f.), or

2 3

xz
E(m):a0+a1—1—!—|—a25—|—a33—!+--- )

its exponential generating function (or e.g.f.). (These are formal power series
having the sequence as coefficients; questions of convergence will not concern
us.)

For example, the sequence M2535: 1, 3, 6, 10, 15, ... of triangular numbers
has

o
(1-z)*”

2
<1+2m+%) & .

Generating functions provide a very efficient way to represent sequences.

=
B
I

A great deal has been written about how generating functions can be used
in mathematics: see for example Bender & Goldman [ITUMIJ 20 753 71], Berg-
eron, Labelle and Leroux [BLL94], Cameron [DM 75 89 89], Doubilet, Rota and
Stanley [Rota75 83], Graham, Knuth and Patashnik [GKP], Harary and Palmer
[HP73], Leroux and Miloudi [LeMi91], Riordan [R1], [RCI], Stanley [Stan86],
Wilf [Wilf90]. (See also the very interesting work of Viennot [Vien83].)

Once a recurrence has been found for a sequence, techniques for solving it will
be found in Batchelder [Batc27], Greene and Knuth [GK90], Levy and Lessman
[LeLe59], Riordan [R1], and Wimp [Wimp8&4].
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For example, consider M0692, the Fibonacci numbers: 1, 1,2, 3, 5, 8, 13, 21,
34, .... These are generated by the recurrence a, = an—; + an—2, and from this
it is not difficult to obtain the generating function

1
l4az+222+30° + 524+ = ——— |
1 —z— 22

and the explicit formula for the nth term:
n+1 n+1
oo L {1+ V5 1-+/5
"5 2 2

2.5 Analysis of Differences

This is the best method for analyzing a sequence “by hand”. In favorable cases
it will find a recurrence or an explicit formula for the nth term of a sequence, or at
least it may suggest how to continue the sequence. It succeeds if the nth term is a
polynomial in 72, as well as in many other cases.

If the sequence is
ap, @1, Q02,43,04, ... ,
then its first differences are the numbers
Aa0:a1 — ao, Aa1 = az — ay, Aagzag—a2, ey
its second differences are
A’ay = Aa; — Aag, A’a; = Aay — Aay, A’ay = Aas —Aay, ...,

and so on. The Oth differences are the original sequence: Aoy = ag, Aa; = a,
A%y = a,, . ..; and the kth differences are

Akan = Akilanﬂ — Akilan

or, in terms of the original sequence,

k

-k
Ara, = Z(—w(i)am_i | @1

=0

Therefore if the differences of some order can be identified, Eq. (2.1) gives a
recurrence for the sequence. Furthermore, if the differences a,,, Aam, A2am,
A3a,,, ... are known for some fixed value of m, then a formula for the nth term is

given by
i n
Unim = Z (k_) Afa,, . (2.2)
k=0
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The array of numbers

ap a1 as . as ay4
Aayp Aay Aay Aas
A2 ap A2 a A2 az

Aay Aay

is called the difference table of depth I for the sequence.

Example (i). M3818, the pentagonal numbers:

n 1 2 3 4 5 6 7 8
an 1 5 12 22 35 51 70 92
Aa, 4 7 10 13 16 19 22
A2, 3 3 3 3 3 3
Aa, 0 0 0 0 0

Since A%a,, = 3, AGn41 — Aan = 3, 1. Gny2 —20n4+1 + @, = 3, whichis a
recurrence for the sequence. An explicit formula is obtained from Eq. (2.2) with
m = 1:

-1 1
ni1 = 1+4<T> +3<Z> =1 +4n+3”(L2~) = S(n+1)(Bn+2).

In general, if the rth differences are zero, a,, is a polynomial in n of degree
r—1.

Example (ii). M3416, Eulerian numbers:

n 0 1 2 3 4 5 6 7
an, O 1 4 11 26 57 120 247
Aay, 1 3 7 15 31 63 127
Aa, 2 4 8 16 32 64

Here A%a,, = 2!, Aa, = 2"*! — 1, and a,, = 2"*! — n — 2. Equation (2.2)
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gives the same answer.

Example (iii). M1413, the Pell numbers:

n 1 2 3 4 5 6 7
an 1 2 5 12 29 70 169
Aay 1 3 7 17 41 99
A’a, 2 4 10 24 58
1A%a, 1 2 5 12 29

Since %Azan = an, Eq. (2.1) gives the recurrence an+2 — 2an+1 — an = 0.
Calculating further differences shows that A*a; = 2[¥/2] and so Eq. (2.2) gives the

formula .
n
Apy] = Z <k>2[k/2] .
k=0

If no pattern is visible in the difference table of depth 1, we may take the leading
diagonal of that table to be the top row of a new difference table, the difference
table of depth 2, and so on. For example, the difference table of depth 1 for

0,2,9,31,97,291,857

18

0 2 9 31 97 291 857
2 7 22 66 194 566
5 15 44 128 372
10 29 84 244
19 55 160
36 105
69

No pattern is visible, so we compute the difference table of depth 2:

0 2 5 10 19 36 69
2 3 5 9 17 33
1 2 4 8 16
Success! If we denote the sequence 0, 2,5, ... by by, b1, by, . . ., then we see that

A?b, = 2", b, = 2™ +n — 1, and the original sequence is

anzzn:<z>(2k+k—l).

k=0
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In general, the relationship between the top row of a difference table

bo = ag a ay as a4 as
by
by
bs
by

and the leading diagonal is given by

an = zn: <Z> b, by = Zn:(—l)"*’“ (Z) ay . (2.3)

2.6 Other Methods for Hand Analysis

o Try transforming the sequence in various ways — see Sect. 2.7. e Is the
sequence close to a known sequence, such as the powers of 27 If so, try subtracting
off the known sequence. For example, M3416 (again): 0, 1, 4, 11, 26, 57, 120,
247, 502, 1013, 2036, 4083, . .. . The last four numbers are close to powers of 2:
512, 1024, 2048, 4096; and then it is easy to find a,, = 2" —n — 1.

e Is a simple recurrence such as a, = aan—; + Ba,—, (wWhere a, are
integers) likely? For this to happen, the ratio p,, = ant1/a, Of successive terms
must approach a constant as n increases. Use the first few values to determine «
and 3 and then check if the remaining terms are generated correctly.

o If the ratio p, has first differences which are approximately constant, this
suggests a recurrence of the type a, = ana,—; ---. For example, M1783: 0,
1, 2, 7, 30, 157, 972, 6961, 56660, 516901, ... has successive ratios 2, 3.5,
4.29,5.23,6.19,7.16, 8.14, 9.12, . . . with differences approaching 1, suggesting
0n = nan—1+7?. Subtracting na,_; from a,, we obtain the original sequence 0,
1,2,7,30,157,972, ... again, 80 a, = Nap_1 + apn_2.

This example illustrates the principle that whenever p, = an41/a, seems to
be close to a recognizable sequence r,, one should try to analyze the sequence
by, = Gnt1 — Tnln.

e A recurrence of the form a,, = na,,_1+ (small term) can be identified by the
fact that the 10th term is approximately 10 times the 9th. For example, M1937: 0,
1,2,9, 44, 265, 1854, 14833, 133496, 1334961, .. ., a, = nap—1 + (—1)™.

e The recurrence a, = a?_; + - - - is characterized by the fact that each term
is about twice as long as the one before. For example, M0865: 2, 3, 7, 43, 1807,
3263443, 10650056950807, . . ., and a,, = aifl —Qp_1 + 1.
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e Does the sequence, or one obtained from it by some simple operation, have
many factors? Consider the sequence 1, 5, 23, 119, 719, 5039, 40319, ... . As it
stands, the sequence cannot be factored, since 719 is prime, but the addition of 1
to all the terms gives the highly composite sequence 2,6 =2 -3,24 =2-3 -4,
120 =2-3-4-5,..., which are the factorial numbers, M1675.

e The presence of only small primes may also suggest binomial coefficients.
For example, M1459, the Catalan numbers: 1,1,2,5,14 =2-7,42=2-3 -7,
132=4-3-11,429=3-11-13,1430=2-5-11-13,4862 =2-11-13-17,. ..

and
1 2n
ay =
n+1\n

e Is there a pattern to the exponents in the prime factorization of the terms?
E. g. M2050: 2 = 2!, 12 = 223!, 360 = 23325!, etc.

(see Fig. M1459).

e Sequences arising in number theory are sometimes multiplicative, i.e. have
the property that @, = ama, whenever m and n have no common factor. For
example, M0246: 1,2,2,3,2,4,2,4, ..., the number of divisors of n.

o If the sequence is two-valued, i.e. takes on only two values X and Y
(say), check if any of the six characteristic sequences can be recognized. The
characteristic sequences, all essentially equivalent to the original sequence, are:

1. Replace X’s and Y’s by 1°s and 2’s

2. Replace X’s and Y’s by 2’s and 1’s

3. The sequence giving the positions of the X’s

The sequence giving the positions of the Y’s

The sequence of run lengths

S &

The derivative sequence, i.e. the positions where the sequence changes

For example, the sequence
2,2,3,3,3,2,2,2,2,2,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3, ..

contains runs of lengths
2,3,5,7,11,...

which suggests the prime numbers as a possible explanation.
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e Write the terms of the sequence in base 2, or base 3, .. ., or base 8, and see
if any pattern is visible. E.g. M2403: 0, 1, 3,5, 7,9, 15, 17, 21, .., the binary
expansion is a palindrome.

e If the terms in the sequence are all single digits, is it the decimal expansion
of a recognizable constant? See Fig. M2218. If only digits in the range O to b — 1
occur, is it the expansion of some constant in base b?

e Can anything be learned by considering the English words for the terms of
the sequence? M1030 and M4780 are typical examples of sequences that can be
explained in this way.

e There are a number of techniques for attempting to find a recurrence or
generating function for a sequence. Most of these are best carried out by computer:
see Sect. 2.8.

o The quotient-difference algorithm. One such method, however, can be
carried out by hand. This procedure will succeed if the sequence satisfies a
recurrence of the form

T
Un = CiGn_i, 2.4)
i—1
where r and ¢y, .. ., ¢, are constants. The following description is due to Lunnon

[Lunn74], who calls it the quotient-difference algorithm, since it is similar to
a standard method in numerical analysis (cf. Gragg [SIAR 14 1 72], Henrici
[Henr67], Jones and Thron [JoTh80]). The algorithm is also described by Conway
and Guy [CoGu95]. Given a sequence ag, ay, - . ., we form an array {S, »} with
So,n = 1foralln, S|, = an, and in general

an An+1 o Op4m—1
Qp— a. e Q@ —
Spnn = det el " nme2 o (2.5)
Qn—m+41 e (27

Any entry X in the array is related to its four neighbors

w E

e

by the rule
X*=NS+EW, (2.6)

and this can be used to build up much of the array, falling back on (2.5) when (2.6)
is indeterminate. A recurrence of the form (2.4) holds if the (r + 1)throw Sy »
is identically zero.
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For example, M2454: 1,1, 1,3, 5,9, ... gives rise to the array

11 1 1 1 1 1 1 1
11 1 3 5 9 17 31 57
0 -2 4 -2 -4 10 -8
4 4 4 4 4
0 0 O

Row 4 is identically zero, and indeed

Gpn = Ap—1 1 Gp—2+ Cn—3 .

Zeros cause a problem in building the table, since then both sides of (2.6) vanish.
Lunnon shows that the zeros always form square “ windows”, as illustrated in the
following array for the sequence of Fibonacci numbers minus one (cf. M1056):

11 1 1 1 1 1 1 1 1 1 1 1 1
o1 2 4 7 12 20
0/ 1102 1 4

There are simple rules for working past a window of zeros, found by J. H. Conway,
and included here at his suggestion (see also [CoGu95]). To work past an isolated
Zero

we use the rule that N25’ + N'S? = W2E' + W'E?. To work around a larger
window such as
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w3 €1

26 O O O e

w1 €3

@
3

»
3

we let n, s, e, w,ny, Sy, . . . denote the ratios of the entries at the head and tail of
the appropriate arrow. Then the rules are that

ns = ew

(+ for even-sized windows, — for odd-sized), and

S1 n wy €]
s n w e’
52 ny wy €2
s n w e’
83 n3 w3 €3
s n w e’

etc.

However, if a computer is available, it is generally easier to use the gfun
package (Sect. 2.8) than the quotient difference algorithm.

Getu et al. [STAD 5 497 92] show that in some cases one can learn more by
decomposing the matrix on the right-hand side of (2.5) into a product of lower
triangular, diagonal, and upper triangular matrices.

e Is there any other way in which the nth term of the sequence could be
produced from the preceding terms? Does the sequence fall into the class of what
are loosely called self-generating sequences? A typical example is M0257: 1, 2,
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2,3,3,4,4,4,5, ...,in which a,, is the number of times n appears in the sequence.
See Figs. M0436, M0557 for further examples.

e Is this a Beatty sequence? If o and § are positive irrational numbers with
1/a+ 1/8 = 1, then the Beatty sequences

o], [2a], Ba], ... and [6],[26],(304],- -

together contain all the positive integers without repetition (see Fig. M1332). The
following test for Beatty sequences is due to R. L. Graham. If a;, a,, . . . is a Beatty
sequence, then the values of ay, ..., a,—1 determine a, to within 1. Look at the
sums aj; + an_1, @2 +@p—2, ..., a,—1 + a1. If all these sums have the same value,
V say, then a,, must equal V or V 4 1; but if they take on the two values V' and
V + 1, and no others, then a,, must equal V' 4 1. If anything else happens, it is
not a Beatty sequence. For example, in the Beatty sequence M2322: 1, 3, 4, 6, 8,
9,...,wehave a; + a; = 2 s0 a, must be 2 or 3 (it is 3); a1 + a, = 4 so a3z must
be 4 or 5 (itis 4); a; + as = 5 and a, + a; = 6, s0 a4 must be 6 (it is); and so on.

2.7 Transformations of Sequences

One of the most powerful techniques for investigating a strange sequence is to
transform it in some way and see if the resulting sequence is either in the table or
can be otherwise identified. (A more elaborate procedure, at present prohibitively
expensive, would apply these transformations both to the unknown sequence and
to all the sequences in the table, and then look for a match between the two lists.)

For example, the sequence 1, 4, 5, 11, 10, 20, 14, 27, 24, 34, . . . (of no special
interest, invented simply to illustrate this point), is not in the table. But the M&bius
transform of it (defined below) is 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, ... which is
M2336, the sequence of numbers that are of the form z2 + zy + 2.

This section describes some of the principal transformations that can be ap-
plied. Although any single transformation can be performed by hand, a thorough
investigation using these methods is best carried out by computer. The program
superseeker described in Sect. 2.9 tries many such transformation.

Our notation is that ag,a;,ay, ... is the unknown sequence, and A(z) and
Ag(x) are its ordinary and exponential generating functions; by, b1, by, . . . is the
transformed sequence with 0.g.f. B(z) and e.g.f. Bg(x).

‘We begin with some elementary transformations. The reader will easily invent
many others of a similar nature. (Superseeker actually tries over 100 such
transformations.)
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o Translations: b, = a, + ¢; b, = a, +n + ¢, b, = a, — n + c; where cis
-3,-2,-1,0,1,2, 0r3.

e Rescaling: b, = 2an; b, = 3an; b, = a, divided by the g.c.d. of all the
a;’s; the same after deleting ao; the same after deleting ag and ay; b, = a,/n! (if
integral). If all a,, are odd, set b, = (a, — 1)/2.

e Differences: b, = Aan; b, = Aa,; etc. If a,, divides an41 for all n, set
bp, = Gnt1/Gn-

e Sums of adjacent terms: b, = a,, + an_1; by, = an + an_s.

e Bisections: b, = aypn; b, = aypy1; trisections: b, = asp; bn = azpy1,
b, = A3p42, €tC.

e Reciprocal of generating function: B(z) = 1/A(x). For the combinatorial
interpretation of b, in this case see Cameron [DM 75 91 89].

e Other operations on A(z): B(z) = A(x)% 1/A(z)? A(z)/(1 — z) [so that
by = Y axl; A(z)/(1 — z)?; ete.

<n
e Similar operations on Ag(z): Bg(z) = Ag(z)? 1/Ar(z); ete.
e Complementary sequences. Those numbers not in the original sequence.
Also b, =n —an; by, = (7;) — Q.
The following transformations are rather more interesting.

¢ Exponential and logarithmic transforms. Several versions are possible,
but the usual one transforms a;, as, as, . . . into by, by, bs, ... via

2 bz N Gz
1—1—21 py :exp(X_:1 ol > , Q.7
i.e.
1+ Bg(z) =exp Ag(z) . (2.8)

There is a combinatorial interpretation. For example, if a, is the number of
connected labeled graphs on n nodes, M3671, then b,, = 2(z), M1897, is the total
number of connected or disconnected labeled graphs on n nodes. More generally,
if a,, is the number of connected labeled graphs with a certain property, then b,
is the total number of labeled graphs with that property. Eq. (2.7) is Riddell’s
formula for labeled graphs (Harary and Palmer [HP73 8]).
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Of course the inverse transformation is

= log (1 +3° b’;j > . 2.9)
n=1 )

In this situation we say that b), b, ... is the exponential transform of a\,ay,. . .,
and that ay, ap, . . . is the logarithmic transform of by, by, . . . .

n=1

e The Euler transform. For unlabeled graphs a different pair of transforma-
tions applies. If two sequences a;, ay, as, ... and by, by, bs, . . . are related by

(e}

1+anw Hﬁ (2.10)

i=1

or equivalently

o0 wk:
1+ B(z) =exp (Z A(k )> , (2.11)

k=1
then we say that {b,, } is the Euler transform of {a, }, and that {a,, } is the inverse
Euler transform of {b,}.

Calculations are facilitated by introducing an intermediate sequence c;, ¢z, . . .
defined by

cn =) dag, (2.12)
dln
or
n—1
Cn = nby, — Z Cibnr (2.13)
k=1
with | "
Edz.n:ﬂ(g) cas @.14)

where p is the Mobius function (see M0O11 and Fig. M0500). Using these formula
{b,} can be obtained from {a,}, or vice versa. The ¢, have generating function

log(1 + B(z ch . (2.15)

There are many applications of this pair of transforms. In graph theory, if a,,
is the number of connected, unlabeled graphs with some property, then b, is the
total number of graphs (connected or not) with the same property. In this context
(2.11) is sometimes called Riddell’s formula for unlabeled graphs (cf. Cadogan
[JCT B11 193 71], Harary and Palmer [HP73 90]).
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For example, if a,, (n > 1) is the number of connected unlabeled graphs with 7
nodes, M1657: 1,1, 2,6, 21, ..., then b,(n > 1) is the total number of unlabeled
graphs with n nodes, M1253: 1, 2, 4, 11, ... . The intermediate sequence cy, is
M2691: 1,3,7,27,....

There are also number-theoretic applications: b,, is the number of partitions of
n into integer parts of which there are a; different types of parts of size 1, a, of
size 2, and so on. E.g. if all a,, = 1, then b,, is simply the number of partitions
of n into integer parts (M0663). If a,, = 1 when n is a prime and O when n
is composite, b, is the number of partitions of n into prime parts (M0265). An
important example of the {b,, } sequence is M0266, which arises in connection with
the Rogers-Ramanujan identities — see Andrews [Andr85], Andrews and Baxter
[AMM 96 403 89]. Andrews [Andr85] discusses a number of other number-
theoretic applications, and Cameron [DM 75 89 89] gives further applications in
other parts of mathematics.

e The Mobius transform. If sequences aj,as,as,... and by, by, b3,. .. are
related by

S Zu(%)ad, (2.16)
din

an = Zbd, (2.17)

d|n

where the summations are taken over all positive integers d that divide n, we say
that {b,, } is the Mobius transform of {a., }, and that {a., } is the inverse Mobius (or
sum-of-divisors) transform of {b,, }. Equations (2.16), (2.17) are called the MObius
inversion formulae. (The sequences in (2.12) and (2.14) are related in this way.)
Two equivalent formulations are

o0 o0 ;1:"
"= by—— :
nzzjlanx ;nlﬁn, (2.18)
N g(s)ib—” (2.19)
n=1 n - n=1 ne 7 -

where

C(s)zZ%z 11 1 L (2.20)

is the Riemann zeta function.

Again there are many applications. For combinatorial applications see Rota
[ZFW 2 340 64] (as well as several other papers reprinted in [GeRo87]), Bender
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and Goldman [AMM 82 789 75], and Stanley [Stan86]. For number-theoretic
applications see for example Hardy and Wright [HWI §17.10] — the nght -hand
side of (2.18) is called a Lambert series.

Examples. (i) Ifb, = 1,1,1,..., a, = number of divisors of n (M0246). (ii) If
b, = 1,0,0,..., a, = Mobius function (M0011). (iii) If b, = n, a, = Euler
totient function (M0299). (iv) If by, = 0, ba,+; = (—1)"4, then a,, = number of
ways of writing n as a sum of two squares (M3218).

e The binomial transform. If ag,a;,a;,... and by, b, by, ... are related as
in Eq. (2.3), we say that {a,} is the binomial transform of {b, }, and that {b, } is
the inverse binomial transform of {a, }. Equivalently, the exponential generating
functions are related by

As we saw in Sect. 2.5, these transformations arise in studying the differences of a
sequence. The leading diagonal of the difference table of a sequence is the inverse
binomial transform of the sequence.

Examples. If a,, = 3", b, = 2™, and more generally, if a, = k™, b, = (kK — 1)™.

The Bell numbers 1, 1, 2, 5, 15, 52, ... (M1484) are distinguished by the
property that they are shifted one place by the binomial transform: a, = bp;
[BeS194].

e Reversion of series. Given asequence oy, a;, as, . . . we can form a generating
function

=2(l4+ a1z +az® + ), (2.22)

and by expressing z in terms of y obtain a new sequence by, by, b3, . . . by writing
z=y(l —by—by®—--). (2.23)

This process is called reversion of series, and explicit formulae expressing b,, in
termsofay, ..., a, canbe found forexamplein [AS1 16], [RCI 149], [TMJ 273 92].
This transformation is its own inverse. For example, if the a,, are the Fibonacci
numbers 1, 2, 3, 5, §, ... (M0692), the b, are 1, 2, 5, 15, 51, 188, ... (M1480).
It is amusing that the latter sequence is also the binomial transform of the Catalan
numbers (M1459). An alternative version of this transformation is: given ag = 1,
ay,... wesety = > a;z*!, whose reversion is z = Y b;z**!, producing the
i=0 i=0
transformed sequence by = 1, by, ... .
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e Other transforms. A pair of transforms of the form

an = Z Cn,kbka by, = ZDn,kak

can be defined whenever we find integer arrays {C, 1} and {D,, ;, } satisfying the
orthogonality relation

Z Cm,ka,n - {

Riordan’s book [RCI] gives many such examples, including transforms that are
based on Chebyshev and Legendre polynomials.

1 m=mn,

0 m#n.

We conclude by mentioning that the pair of transforms based on Stirling num-
bers seems to be worth investigating further, particularly in the context of enumer-
ating permutations. In this case we have

n

an =Y s(n, k)b, bn =Y S(n,kax, (2.24)
k=0

k=0

where the coefficients are Stirling numbers of the first and second kinds, respec-
tively (see Figs. M4730, M4981; also [R1 48], [RCI 90], [GKP 252], [BeS194]).

2.8 Methods for Computer Investigation of Sequences

As we have already mentioned, a thorough investigation of the transformations
of a sequence described in the previous section is best done by computer.

e Gfun. Atthe heart of the following techniques is an algorithm of Cabay and
Choi [SIAC 15 243 86] that uses Padé approximations to take a truncated power
series

coter+ert+ -+ epoyz™! (2.25)

with rational coefficients, and determines a rational function p(x)/q(x), where
p(z) and g(z) are polynomials with rational coefficients, whose Taylor series
expansion agrees with (2.25) and in which deg p + deg g is minimized. If degp +
deg g < n—2, we say this is a “good” representation of (2.25) (for then p(z)/q(z)
contains fewer constants than the original series).

The Cabay-Choi algorithm is incorporated in the Maple convert/ratpoly
procedure. Bergeron and Plouffe [EXPM 1 307 92] observed that this provides
an efficient way to search for a wide class of generating functions for sequences.
Given a sequence ag, aj, . . . , an—1, one can form the o.g.f. A(z)ande.g.f. Ap(x),
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and see if either have a “good” rational representation. If not, one can try again
with the logarithmic derivates A'(z)/A(z) and Ay (z)/Ag(z), and with many
other transformed generating functions. In this way Bergeron and S.P. were able
to find generating functions such as 1/(2 — e*) for M2952.

This work was carried much further by S.P. in his thesis [Plou92], which gives
over 1000 generating functions, recurrences and formulae for the 4500 sequences
in a 1991 version of the present table. Some of these are immediate, others can be
proved with difficulty, but a considerable number are still only conjectural. The
simplest of these (but not the conjectural ones) have now been incorporated in the
table. To have included the rest, which are usually quite complicated, would have
greatly increased the length of this book.

The gfun Maple package of Salvy and Zimmermann [SaZi94] incorporates
and greatly extends the ideas of Bergeron and S.P. With gfun, one can (among
many other things) check very easily:

(a) whether there is a “good” rational function representation for the o.g.f. or
e.g.f. of a sequence, or for their logarithmic derivatives, or their reversions;

(b) whether the generating function y(z) of any of these types satisfies a
polynomial equation or a linear differential equation with polynomial coefficients;

(c) whether the coefficients of any of these generating functions satisfy a linear
recurrence with polynomial coefficients;

and many other things. The package contains a number of commands that make
it easy to manipulate sequences and power series and to convert between different
types. The superseeker program described in Section 2.9 makes good use of
gfun.

e Look for sequences in the table that are close to the unknown sequence.
There are a number of ways to do this. Let a = ag, ay, . . ., an—1 be the unknown
sequence, and b = by, by, ..., b,—1 a typical sequence in the table. We truncate
the longer sequence so they both contain the same number of terms, n. Then we
may ask:

(a) Which sequences in the table are closest in L; norm, i.e. minimize
n—1
Z |ai - bz'| ?
i=0

(b) Is there a sequence in the table such that

la; —b;| <1 forall ¢?
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Or for which |a; — b;| is a constant sequence?

(c) Which sequences in the table are closest in Hamming distance? (Write a
and b as strings of decimal digits and spaces, and count the places where they
differ.)

(d) Which sequences in the table are most closely correlated with the unknown
sequence? I.e., which maximize the squared correlation coefficient

) 1 n—1 B _ 2

=0

where

n—1 1
a= gai, siz n_IZ(ai—E)z

=0

S|=

are the mean and variance of a, with similar definitions for b and s7.

Notes: Among other things, (a) will detect small errors in calculation; (b) will
detect sequences whose definition differs by a constant from one in the table; (c)
will detect typing errors; (d) is the most time-consuming of these tests, and will
detect a sequence of the form a = pb + g, where b is in the table and p and g are
constants.

Another possible test of this type is to see if a is a subsequence of some
sequence in the table, but we have not found this useful.

The remaining tests in this section are more speculative. However, once in a
while they may find an explanation for a sequence that has not succumbed to any
other test.

o Apply the Berlekamp-Massey or Reed-Sloane algorithms. Suppose the
sequence takes on only a small number of different values, e.g. {0,1,2,3}. By
regarding the values as the elements of a finite field (the Galois field GF(4) would
be appropriate in this case) we may think of the sequence as a sequence from this
field. The Berlekamp-Massey algorithm is an efficient procedure for finding the
shortest linear recurrence with coefficients from the field that will generate the
sequence — see Berlekamp [Be68 Chap. 7] and Massey [PGIT 15 122 69].

(Other references that discuss this extremely useful algorithm are Dickinson
etal. [PGAC 19 31 74], Berlekamp et al. [UM 5 305 74], Mills [MOC 29 173 75],
Gustavson [IBMJ 20 204 76], McEliece [McEl177], MacWilliams and Sloane
[MS78 Chap. 9], and Brent et al. [JAlgo 1 259 80].) This algorithm would
discover for example that the sequence

0,1,2,1,3,0,3,0,1,3,3,2,3,3,3,1,2,0,1,1,0,0, . ..
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is generated by the linear recurrence
An = w(an—l + an—2 + an—3)

over GF(4), where we take GF(4) to consist of the elements {0, 1,w,w?},
with w? = w + 1, and write 2 for w, 3 for w?. The Reed-Sloane algorithm
[SIAC 14 505 85] is an extension of this algorithm which applies when the terms
of the sequences are integers modulo m, for some given modulus m. For example,

this algorithm would discover that the sequence
1,2,4,3,1,3,6,7,4,4,1,5,3,0,5,6, ...
is produced by the recurrence

Qp = Gp—1 + 2an—2 +3an—3 (mod 8).

e Apply a data compression algorithm. Feed the sequence to a data com-
pression algorithm, such as the Ziv-Lempel algorithm as implemented in the Unix
commands compress or gzip.

If the sequence is compressed to a much greater extent than a comparable
random sequence of the same length would be, there is some structure present
that can be recovered by examining the compression algorithm (see for example
[BCWI0)).

For example, gzip compresses MOOO1 from 150 characters to 36 characters,
whereas a random binary sequence of the same length typically is compressed
only to 60 bits. So if a 150-character binary sequence is compressed to (say) 45
bits or less, one can be sure it has some concealed structure.

It would be worth running this test on any stubborn sequence which contains
only a limited set of symbols. By experimenting with random sequences of the
same length and containing the same symbols, one can determine their average
compressibility. If the stubborn sequence is compressed to a greater degree than
this then it has some hidden structure.

e Compute the Fourier transform of the sequence. An article by Loxton
[Loxt89] demonstrates that the Fourier transform of a sequence can reveal much
about how it is generated. This is a topic that deserves further investigation.

2.9 The On-Line Versions of the Encyclopedia

There are two on-line versions of the Encyclopedia that can be accessed via
electronic mail. The first is a simple look-up service, while the second tries very
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hard to find an explanation for a sequence. Both make use of the latest and most
up-to-date version of the main table.

To use the simple look-up service, send email to
sequences@research.att.com
containing lines of the form
lookup 5 14 42 132 429

There may be up to five such lines in a message. The program will automatically
inform you of the first seven sequences in the table that match each line. If there
are no “lookup” lines, you will be sent an instruction file.

Notes. When submitting a sequence, separate the terms by spaces (not commas).
It may be advisable to omit the initial term, since there are often different opinions
about how a sequence should begin. (Does one start counting graphs, say, at 0
nodes or at 1 node? Do the Lucas numbers begin 1, 3,4, 7, 11, ... 0or 2, 1, 3, 4,
7,11, ...?) Omit all minus signs, since they have been omitted from the table. If
you receive seven matches to a sequence, try again giving more terms. For more
details, see [Sloa94].

The second server not only looks up the sequence in the table, it also tries hard
to find an explanation for it, using many of the tricks described in this chapter (and
possibly others — at the time of writing the program is still being expanded). To
use this more powerful program, send email to

superseekerlresearch.att.com
containing a line of the form
lookup 1 2 4 6 10 14 20-26 36 46 60 74 94 114 140 166

The program will apply many tests, and report any potentially useful information
it discovers.

Notes. The word “lookup” should appear only once in the message. The terms of
the sequence should be separated by spaces (not commas). For this program the
sequence should be given from the beginning. Minus signs should be included,
since most of the programs will make use of them. If possible, give from 10 to 20
terms. If you receive seven matches from the table, try again giving more terms.

2.10 The Floppy Disk

A floppy disk containing every sequence in the table (although not their
descriptions) is available from the publisher. Please contact Academic Press at


mailto:sequences@research.att.com
mailto:superseeker@research.att.com

v

28 CHAPTER 2. HANDLING A STRANGE SEQUENCE

1-800-321-5068 for information regarding the floppy disk to accompany The
Encyclopedia of Integer Sequences. Please indicate desired format by referring
to the ISBN for Macintosh (0-12-558631-0) or for IBM/MSDOS (0-12-558632-9).

The disk contains a line such as
M[1916] := [A6226, 1, 2, 9, 18, 118]:

for each sequence. The first number gives the sequence number in this book,
the second gives the absolute identification number for the sequence, and the
remaining numbers are the sequence itself.

This disk will enable readers to study the sequences in their own computers.
Of course the book will still be needed for the descriptions of the sequences and
the references.



Chapter 3

Further Topics

3.1 Applications

We begin by describing some typical ways in which the 1973 book [HIS] has
been used, as well as some applications of the sequence servers mentioned in
Section 2.9. (Even though at the time of writing the latter have been in existence
for only a few months, there have already been some interesting applications). It
is to be expected that the present book will find similar applications.

The most important way the table is used is in discovering whether someone has
already worked on your problem. Discrete mathematics has grown exponentially
over the last thirty years, and so there is a good chance that someone has already
looked at the same problem, or an equivalent one. In this respect the book serves
as an index, or field guide, to a broad spectrum of mathematics. If the answers to
the first few special cases of a problem can be described by integers, and someone
has considered the problem worth studying, there is a good chance you will find
the sequence of numbers in this book. Of course if not, and if superseeker
can’t do anything with it, you should send in the sequence so that it can be added
to the table — see Sect. 2.2 for instructions. Apart from anything else, this stakes
out your claim to the problem! But, more important, you will be performing a
service to the scientific community.

As with any dictionary (and as predicted by the epigraph to Chapter 1), most
such successful uses go unrecorded. The reader simply stops working on the
problem, as soon as he or she has been pointed to the appropriate place in the
literature.

In many cases the book has led to mathematical discoveries. The following
stories are typical.

e R. L. Graham and D. H. Lehmer were investigating the permanent P, of
Schur’s matrix, the n x n matrix (a#*), 0 < j,k < n — 1, where a = €>™/™, and
found that the initial values P;, P, Ps, ... were

1,-3,-5,—105,81, ...

29
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(P, is0if niseven). Asithappened, this sequence (M2509) was in the Supplement -
[Supp74] to the 1973 book, and N. J. A. S. was able to refer Graham and Lehmer
to an earlier paper by D. H. Lehmer, where the same sequence had arisen! This
provided an unexpected connection with circulant matrices [JAuMS A21 496 76].

¢ Extract from a letter about the 1973 book: “After reading about your book in
Scientific American, I ordered a copy. Several of my friends looked at the book and
stated they thought it was interesting but doubted its usefulness. A few days later
I was attempting to determine the number of spanning trees on an n by m lattice.
In working out the 2 by m case, I determined the first numbers in the sequence
to be 1, 4, 15, 56. Noticing that both sequences No. 1420 and 1421 started this
way, I worked out another term, 209; thus sequence No. 1420 seemed to fit. After
much thought I was able to establish a complicated recursion relationship which I
was later able to show was equivalent to the recursion you gave for No. 1420. ...
In closing I would like to say that your book has already proved to be worthwhile
to me since it provided guidelines for organizing my thoughts on this problem and
suggested a hypothesis for the next term of the sequence. I’m sold!" (Alamogordo,
New Mexico).

e While investigating a problem arising from cellular radio, Mira Bernstein,
Paul Wright and N. J. A. S. were led to consider the number of sublattices of index
n of the planar hexagonal lattice. For n = 1,2,3,... they calculated that these
numbers were 1,1,2,3,2,3,3,5,.... To their surprise, the table revealed that this
sequence, M0420, had arisen in 1973 in an apparently totally different context,
that of enumerating maps on a torus (Altshuler [DM 4 201 73]), and supplied
a recurrence that they had overlooked. (However, it is only fair to add that the
earlier paper did not find the elegant exact formula for the nth term that is given
in [BSW94]. There is also an error in the values given in the earlier paper: x(16)
should be 9, not 16.)

o C. L. Mallows was interested in determining the number of statistical models
with n factors, in particular linear hierarchical models that allow 2-way interac-
tions. Forn = 1,2, ... he found the numbers of such models to be

2,4,8,19,53,209 .

This sequence was not at that time in the table, but superseeker (see Sect. 2.9)
pointed out that these numbers agreed with the partial sums of M 1253, the number
of graphs on n nodes. With this hint, Mallows was instantly able to show that this
explained his sequence (which is now M1153).

e R. K. Guy and W. O. J. Moser [GuMo094] report a successful application
of superseeker in finding a recurrence for the number of subsequences of
[1,2,...,n] in which every odd number has at least one even neighbor. The first
try with the program was unsuccessful, because of an error in one of their terms,
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but when the corrected sequence
1,1,3,5,11,17,39,61,139, ...

(now M2480) was submitted, superseeker used gfun to find the elegant
generating function
1+ +22°
1 =322 — 224

o Inspection of the log file for the sequence servers on March 28, 1994 shows
that at least one high-school student used the program to identify a sequence
(M2638) for her homework.

Another important application of the book is to suggest possible connections
between sequences arising in different areas, as in the Mallows story above. Here
is a typical (although ultimately unsuccessful) example.

e The dimensions of the spaces of primitive Vassiliev knot invariants of orders
1,...,9 form the sequence

1,1,1,2,3,5,8,12,18

the next term being presently unknown (see Birman [BAMS 28 281 93], Bar-Natan
[BarN94]). This sequence coincides with the beginning of M0687, which gives
the number of ways of arranging n pennies in rows of contiguous pennies, each
touching two in the row below. Alas, further investigation by D. Bar-Natan has
shown that next term in the former sequence is at least 27, and so these sequences
are in fact not the same.

e As already mentioned in Sect. 2.8, S.P’s thesis [Plou92] contains many
conjectures about possible generating functions. For example, M2401, the size of
the smallest square into which one can pack squares of sizes 1,2, ..., n, appeared
to have generating function

o0

(1-2)71-2) [[a -2 -2m)7,

m=4

which agreed with the 17 values known at the time [UPG DS5]. This prompted
R. K. Guy [rkg] to calculate some further terms, and to show that in fact this
generating function is not correct. At present no general formula is known for this
sequence.

For an example of a conjectured generating function (for M2306) that turned
out to be correct, see Allouche et al. [AABB].
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3.2 History

I! started collecting sequences in 1965 when I was a graduate student at Cornell
University. I had run across several sequences whose asymptotic behavior I
needed to determine, so I was hoping to find recurrences for them. Although John
Riordan’s book [R1] was full of sequences, the ones I was interested in did not
seem to be there. Or were they? It was hard to tell, certainly some very similar
sequences were mentioned. So I started collecting sequences on punched cards.
Almost thirty years later, the collection is still growing (although it is no longer on
punched cards.)

Over the course of several years I systematically searched through all the books
and journals in the Cornell mathematics library, and then the Bell Labs library,
when I joined the Labs in 1969. A visit to Brown University, with its marvelous
collection of older mathematics books and journals, filled in many gaps. I never did
find the sequences I was originally looking for, although of course they are now in
the table (M4558 was the one I was most interested in: 0, 1,8,78,944, 13800, ...
a very familiar sequence! It essentially gives the average height of a rooted labeled
tree.)

The first book [HIS] was finally published by Academic Press in 1973, and
a supplement [Supp74] was issued a year later. Over the next fifteen years new
material poured in, and by 1990 over a cubic meter of letters, articles, preprints,
postcards, etc., had accumulated in my office. I made one attempt to revise the
book in 1980, with the help of two summer students, Bob Hinman and Tray Peck,
and managed to transfer the 1973 table from punched cards to magnetic disk, and
started processing the new material. But at the end of that summer other projects
intervened (cf. [MS78], [SPLAG]). Ten years later the amount of material waiting
to be processed was overwhelming.

Fortunately S.P. wrote to me in 1991, offering to help with a new edition, and
this provided the stimulus that, four years later, has produced the new book. It
very nearly never happened!

3.3 Differences from the 1973 Book

o Size: There are now 5488 sequences, compared with 2372 in [HIS].

e Format: In [HIS], every sequence was normalized so as to begin 1, n, with
2 < n <999, an initial 1 being added as a marker if necessary. Now the sequence
can begin in any way, subject only to Rule 3 of Sect. 1.5.

!The first person seems appropriate here (N.J.A.S.).



3.4. FUTURE PLANS : 33

o The descriptions are much more informative. Many generating functions
have been included. One of the benefits of the transition from punched cards to
magnetic disk has been an enlarged character set. Before, only upper case letters
could be used; now, all standard mathematical symbols are available.

o All known errors in [HIS] have been corrected. In almost every case these
were errors in the source material, not in transcription. Some erroneous or worth-
less sequences have been omitted.

e There is also a technical change. In the older mathematical literature 1
was regarded as a prime number, whereas today it is not. This has necessitated
changes to a few sequences. M3352 for example now begins 4,9, 11, . .. rather
than 2,4,9,11, ... as in [HIS].

3.4 Future Plans

e The table should be modified so as to include minus signs. Unfortunately to
do this thoroughly would require re-examining thousands of sequences, and this
book has already been delayed long enough.

o It would be nice to have a series of essays, one for each family of sequences
(Boolean functions, partitions, graphs, lattices, etc.), showing how the sequences
are related to each other and which are fundamental. This would clarify the
sequences that one should concentrate on when looking for generating functions,
finding more terms, and so on. The late Victor Meally spent a great deal of time
on such a project, and every square centimeter of his copy of [HIS], now in the
Strens collection of the University of Calgary library, is annotated with cross-
references between sequences, tables, diagrams, and so on — in other words a
greatly expanded version of the Figures in the present book. It would be worthwhile
doing this in a systematic way. Such commentaries could easily fill a companion
volume.

o It would also be useful to classify the sequences into various categories, a
multiple classification that would indicate:

o subject (graphs, partitions, etc.),

e type (enumerative, number-theoretic, dependent on base 10 representation,
frivolous, etc.), and

9«

e method of generation (ranging from “explicit formula”, “recurrence”, etc.,
to “the next term not known”).

It is surprisingly difficult to give precise definitions for some of these classes —
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there are explicit formulae for the nth prime, for instance, and the most intractable
enumeration problem can be encoded into a recurrence if one defines enough
variables (see for example [JCT 5 135 68]).

There are however a number of mathematically well-defined classes of se-
quences, for instance generalized periodic sequences (MacGregor [AMM 87 90
80]), k-automatic sequences (Cobham [MST 3 186 69; 6 164 72]), k-regular se-
quences (Allouche and Shallit [TCS 98 163 92]), differentiably finite sequences
(Stanley [EJC 1 175 80]), constructibly differentiably finite sequences (Bergeron
and Reutenauer [EJC 11 501 901]), etc., which could be used as a basis for a more
rigorous classification. We should also mention the recent studies of integer se-
quences that have been made by Lison&k [Lis093], Sattler [Satt94] and Théorét
[Theo94], [Theo95].

e There are many other features that could be added to the table, such as:

e Maple, Macsyma, Mathematica, Pari, etc. procedures to generate as many
terms of the sequence as desired (if available), or

e a complete list of all known terms (if it is difficult to generate);
e generating functions or recurrences in every case for which they are known;

e a description of the asymptotic behavior of the sequence, and other inter-
esting mathematical properties;

o full details of the source for each sequence (author, title, etc.), or even,

o the full text of the article or an extract from the book where the sequence
appeared.

Finally, what about a table of arrays? Much remains to be done!
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MO0005 0,0,0,2,0,0,0,0,0,0, ...

THE TABLE OF SEQUENCES

SEQUENCES OF 0’s AND 1°s

Mo0000 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, O,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
The zero sequence. [0,1; A0004]

Mmooo1 o,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0, 1,0,
1,01,01,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0, 1,0
A simple periodic sequence. [0,1; A0035]

mo0002 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
The characteristic function of 0: a(n) = 0".[0,1; A0007]

Moo03 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1, 1
The simplest sequence of positive numbers: the all 1°s sequence. [0,1; A0012]

SEQUENCES BEGINNING . . ., 2,0, ...

Mo0004 2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
The first sequence in the main table. [0,1; A0038]

M0005 0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6
Theta series of diamond lattice with respect to mid-point of edge. Ref JMP 28 1653 87.
[0,4; A5926]
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