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It isanold (andwell-understoodproblemin musicthatyoucan' tuneapianoperfectly To understand
why takesatiny bit of mathematicanda smatteringof physics.

1 The Physics

Let me begin by explaining the way a scaleis constructed.To avoid sharpsandflats (andto make the
diagramseasietto draw), I’ [l usethekey of C. So-calledniddleC representaparticularfrequeng. There
arevariousstandardgor fixing thestartingfrequeng. For stringplayersin theU.S.,it is commonlydone
by fixing anA at440Hz. Elsevhere,otherpitchesarecommon.! will avoid thequestiorentirely (almost)
by usingthe old trick of definingmy unitssothatmy middle C hasa frequeng of 1.

Theareaof physicsin play hereis acoustics Therearetwo rulesto begin with:

The Piano Axioms
1. Goingup oneoctare doubleghefrequeng.

2. Tripling thefrequeng movesto the perfecffifth in thenext octave.

Axiom 1 impliesthatthe C oneoctare up from middle C hasa frequeng of 2. Axiom 2 saysthatin our
casethe G in the next octave hasa frequeng of 3. In whatfollows, | will adda prime for eachoctave

I

one octave

C
Z the perfect fifth

AN .

in the second octave

By invertingtherule thatsaysthatthe noteoneoctave abore anothemusthave doublethefrequeng,

we canfill-in the perfectfifth in thefirst octase. It shouldhave half thefrequeng of the G in the second
octave.
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< the perfect fifth
one octave in the second octave

Following Pythagorasye cannow attemptto usethesetwo rulesto constructall the notes’,i.e.,a
completeoctave. The perfectfifth in the key of G is D. Thuswe have, by tripling then halving, then
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G

Perfect fifth

Note thatwe could have startedby tripling G = 3/2 to obtainD"” = 9/2, which would have savedusa
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Now repeatgain:theperfecffifth in thekey of D is A. Thus,by tripling D = 9/8, wearriveatA’ = 27/8.

g

G

We canshorterthis by looking atthe Tableof Fifths, alsoknown asthe Circle of Fifths (but thenyou need
to know how to draw circulartablesin IATEX).

The Cir cle of Fifths

| Tonic | | | [ Fifth | | | |
C D E F G A B C
G A B C D E F# G
D E F# G A B C# D
A B C# D E F# G# A
E F# G# A B C# D# E
B C# D# E F# G# At B
F# G# A# B C# D# E#=F F#
C# D# E#=F | F# | G#=Ab A# B#=C | C#
G#=Ab At B#=C | C# | D#=Eb | E#=F G G#
D#=Eb | E#=F G G# | A#=Bb | B#=C D D#
A#=Bb | B#=C D D# | E#=F G A A#
E#=F G A A# | B#=C D E E#=F
C D E F G A B C

If we usetherule of doubling/halvingor octaves,we arrive atthefollowing frequenciegor thetwelve
notesin our basicoctave:

| Frequeng | Tonic ||
1 C
3/2
9/8
27/16
81/64
243/128
729/512
2187/1024
6561/4096 G#=Ab
19683/8192 D#=Eb
59049/32768 | A#=Bb
177147/131042 E#=F
531441/262144 C

QR = m > o6




However, therearesomerulesof acousticghatmightalsobeused.

e Thefrequeng of the perfectfifth is 3/2 thatof thetonic.

Thefrequeng of thetonic atthe endof the octaveis twice thatof the original tonic.

Thefrequeng of the perfectfourthis 4/3 thatof thetonic.

Thefrequeng of themajorthird is 5/4 thatof thetonic.

Thefrequeng of theminorthird is 6/5 thatof thetonic.

Notethattherulesfor the lastthreerulesarenot consequencesf our two axioms.Usingtheserulesand
combiningthemasefficiently aspossible pnearrivesat the following list of frequenciegor the notesin
theC majorscale.

| Note | Acoustics| Up by fifths, down by octaves ||

C 1 1
D 9/8 9/8

E 5/4 81/64

F 4/3 177147/131042
G 3/2 3/2

A 5/3 27/16

B 15/8 243/128

C 2 531441/262144

Noticethatsomeof thesdractionsarenotequal! In particular thefinal C in thescaleoughtto havefre-
queng twicethebasicC. Insteadjf we gowaaaayp by fifths, thenbackdown againby octaves,we have
this strangefraction,431441/262144, whosedecimalexpansionis (exactly): 2.027286529541015625. If
we took half of this to returnto our startingpoint, we would have:

531441/524288 = 1.013643264 7705078125

This discrepang is known asthe Pythagorean(or ditonic) Comma Sowhatis the problem?To answer
this, it is time to considersomemathematics.

2 The Mathematics

The essencef the comparisoris thatwe went up twelve perfectfifths, which is equivalentto changing

. 3\ 5314411
thestartingfrequeng from 1 to <§> = ~ 109
copy of the note C, but seven octaresup. Thus, we shouldcomparethis frequeng with 27 = 128.
The problemis that we aremixing a function basedon tripling (for thefifths) with a function basedon
doubling(for octaves). More abstractly we aretrying to solve an equationof the type: 2* = 3% where
z andy arerationalnumbers.(With minor finagling, we could restrictto just integers.) Notice that for
differentnotesin our chromaticscale(cf. §5), we will be usingdifferent(andinequivalent)valuesof x
andy. Thefirstissueto contendwith regardingthe difficulty of notesnot agreeingwith themseles(that
is to say enharmonicghat have differentfrequencies)s to make a choiceof whereto concentratehe
errors. Therearewaysof tuninganinstrumentsothat somekeys have only slight problems while other
keys have ratherbaddiscrepanciegSeeSectiond.4 below.)

= 129.746337890625. This shouldproduceanother



2.1 Equal Temperament

The methodthatwesternmusichasadopteds to usethe systemof equal temperament(alsoknown as
eventempeamenj wherebytheratio of the frequencie®f arny two adjacenhotesof thechromaticscale
(i.e. semitone$ is constantwith the only interval thatis acousticallycorrectbeingthe octave. It is not
clearwhenthis wasoriginally developed. Bachcertainlywenta long way to popularizeit, writing two
seriesof twenty-four preludesand fuguesfor keyboardin eachof the twelve major and twelve minor
keys. Theseareknown asthe Well-tempeed Clavier. Somepeopleclaim thatBachactuallyinventedthe
systemof eventemperamentHowever, guitarsin Spainwereevenly temperedat leastasearlyas1482,
long beforeBachwasborn. Beethaen alsowrote works that took advantageof equaltemperamentfor
instancehis Opus39 (1803) Two preludesthroughthe twelvemajor keysfor pianoor organ.
Eventemperamenspreadsheerroraroundin two ways.

1. Theerrorsin ary particularkey aremoreor lessevenly spreacabout.

2. No keys arebetteroff thanary others. With alternatve meansof tempering,suchasjust temper
amentor mean temperament (cf. §4.4), roughly four (out of a possibletwelve) major keys are
clearlybetterthantheothers.

Sincewesterrmusichassettledon achromatic scaleconsistingof twelve semitoneswe cancompute
thenecessaryatio, r. Sincetwelve intervalswill make anoctave, we musthave

M2y = p= 3= 2l/12)

This leavesus with the following valuesfor our C-majorscale. (The tableincludesa comparisorwith
acousticalvalues.)

[ Note | Acoustics | EqualTemperament]

C 1 1

D | 9/8 = 1.125 r? ~ 1.12246

E | 5/4 = 125 T ~ 1.25992

F | 4/3 = 1333...| 15~ 1.33484

G 3/2 = 15 r7 ~ 1.49831

A | 5/3 = 1666...| 1~ 1.68179

B 15/8 = 1.875 r11 ~ 1.88775

C 2 ri2=2

If we do this with a“440” A andadjustsothatthetonic C is acousticallycorrectwith respecto this A,
we arrive atthefollowing table:

[ Note | Acoustics| EqualTemperament]

264Hz | 440/r° ~ 261.626
297 Hz | 440/r7 ~ 293.665
330Hz | 440/r° ~ 329.628
352Hz | 440/r" ~ 349.228
396 Hz | 440/r% ~ 391.995
440 Hz 440

495Hz | 440r% ~ 493.883
528Hz | 440r% ~ 523.251

O|® > o mmolo

It is naturalto usea logarithmicscalefor measuringntervalsin our musical/acousticadetting,since
intervals correspondo ratios. The basicunit in our diatonicscale,the semitone,in equaltemperingis



equalto 100cents Thus,onesemitoneequalsl00centsandanoctave equalsl200cents.We canmeasure
the Pythagoreamommain termsof cents.Thediscrepang was:

()

27 = 128

129.746...

Q

This meanghatcentsaremeasuredh alogarithmicscalewith basethe twelfth root of two. (Really!)
Therefore pur discrepany, in hundredf centsis:

e (B2) - () 25 ()

After alittle algebrawe seethatthis is equalto

144% — 228 ~ 0.23460010385 .. . =~ 23.5 cents
This differenceis sosmallthatmostpeoplecannothearit. However, mary musiciansparticularlystring
players,aresensitve to suchdifferences Following up on the algebraof the precedingproblem,we see
thataninterval correspondingo theratio I equalleOO‘lr‘rg) = 1200log, (I) cents.Thiswill simplify the
formulasgivenbelow for the othercommas.

Thereare othercommas: The syntonic(or Didymic) commais the differencebetweenfour perfect
fifths andtwo octaresplus a majorthird. The syntoniccommaoccursmoreeasilythanthe Pythagorean
commaor the schisma,sinceone doesnt needto go throughparticularly mary chord progressiongo
move throughfour perfectfifths. If youwould like to hearwhata syntoniccommasounddike, | heartily
recommenderich Neuwirth’s book [5] andthe software that comeswith it. In [2], we shov how the
syntoniccommaarisesin a songby Madonna.The schismais the differencebetweereight perfectfifths
plus one major third andfive octaves. The diastismais the differencebetweenfour perfectfifths plus
two major thirds andthreeoctares. The computationsaregivenin Sectiond. It shouldbe clearat this
pointthatmost(indeedalmostall) of theacoustidntervalswill beimperfectin anequallytemperedscale.
Whatis gained,though,is that none of the errorsis particularlylarge. Let me comebackto someof
thedetailsof eventemperamendfteraddressin@notherissue.Namely why shouldwe have twelve half
stepsin anoctave aryway?

2.2 Continued Fractions

We will usethelogarithmbase2, which we denoteby log,(z). Thus,if y = log,(z), then2¥ = z. The
heartof our problemwith fifths andoctavesis the attemptto solve the equation2? = 3¥, wherez and
y areintegersor rationalnumbers.Notice, if we're usingrationalnumberst is anequialentproblemto
solvetheequatior2? = 3.

If we take logarithmsbase2 of bothsidesof thetroublesomequationwe areleft with theequation

zlog,(2) = ylog,(3).

Of coursesincelog,(2) = 1, theequatiorreducedo:
z =ylog,(3) or g =log,(3) .

We thentry to solve this for integer (or rational)valuesof = andy. Unfortunatelylog,(3) is notarational
number The bestwe cando is to try to approximateit by a rationalnumber Pluggingthis into my



calculator | getthe decimalapproximation:1.584962500721. (Note: this is anapproximationithe real
decimalgoeson andon andon andon.) A good— andwell-known — way to approximatean irrational
numberby arationalnumberis by continuedfractions.

A continued fraction is anexpressiorof theform:

1

ag +
a + ————
az+

ag+

1

ag+...

whereay, a1, as, . . . areintegers.Usingthisform (with only 1sin thenumeratorsjneansve will only be
consideringsimple continuedfractions. For notationalcorveniencewrite [ag, a1, a2, ...] for theinfinite
continuedfraction above. Of course,it is alsopossibleto considerfinite continuedfractions. It is an
exerciseto seethat ary rationalnumbercanbe expressedasa finite continuedfraction. | referyou to
Hardy and Wright's book [3] for a discussiorof the uniqguenes®f suchan expression.If we cut off an
infinite continuedfractionafter N terms,we have the N convergent. For theinfinite continuedfraction

givenabove, thisis

1
ag +

1
a + ——
az+
ag+

1

1
R

which is denotedag, a1, as, - - . ,an]. Thisis obviously a rationalnumber which we write (in reduced
form) as?™ . Thereis a corvenientalgorithmfor computingthe continuedfraction expansionof agiven

an
positive numberz, calledthe continued fraction algorithm. For ary positive numberA, let [4] denote
theintegerpartof A. To computea continuedractionexpansiorfor z, take ag = [z]. SO

xr =ag+ Tg

and0 < z¢ < 1. Now write

1 .
— =a1+z1 Wwith a; = [1/$0]
Zo

and )
— =ay+x2 With ay =[1/z4]
Z1

andsoon. Thenumbersag, a1, az2, €tc. arenon-n@ative integers,which go into the continuedfraction
expansion.The ‘remainders’xo, 1, 2, etc.,arerealnumberswith 0 < z; < 1.

2.3 Someexamples

In whatfollows, the notationfor a repeatingcontinuedfractionis similar to thatfor a repeatingdecimal

expressionFor the continuedraction[n, m, m, m, m, . . .], we write [n, m].
e V2=11,2,2,2,..] = [1, 2] with corvergents:
3 7 17 41
2 5 12 29
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=[1,1,1,1,1,...] = [1] with corvergents:

3 5 8 13 21 34 5

122358132134

Noticethatthe numerator@nddenominator®f the convergentsaresuccessie Fibonaccinumbers.
If youstartsimplifying thecorvergentsof thecontinuedraction[1,1, 1, 1, ...] asarationalnumbey
you will soonseewhy thisis so. Try it! Also, it is a well-known factthatthe ratio of successie
Fibonaccinumbersis indeedthe golden mean #5 Thatis to say this particularcontinued
fractiondoesindeedcorvergeto theirrationalnumberit is supposedo represent.

e e=12,1,2,1,1,4,1,1,6,1,1,8,1, 1,10, ...] with corvergents:

9 3 8 11 19 87 106 193 1264 1457 2721

3 4 7 32 39 71 465 536 1001

Remarkablythe patternin the continuedfraction expansionfor e actually persists. Perhapdess
remarkably:it is not particularlyeasyto provethis.

e 7=1[3,7,15,1,292,1,1,1,2,...] with corvergents:

22 333 355 103993 104348 208341 312689 833719
7 106 113 33102 33215 66317 99532 265381
The zero-thcorvergentis familiar to certainstatelegislatures. The first convergentis familiar to

mary schoolchildren,at leastit wasknown beforethe davn of handheldcalculators.Unlike the
continuedractionexpansiorfor e, the completeexpansiorfor 7 is unknown.

Therearetwo theoremghatarepertinentto our discussior{(cf. [3]):

Theorem1 If z is anirrational numberwith continuedfraction expansion[ag, a1, as, . . .| andcorver-
gents{py/qx} andn > 1, then

Pn 1 1

qn dndn+1 dn

Sincethe denominatorof the (n + 1)t corvergentis strictly larger thanthe denominatoiof the nth
convergent(andthey areall integers),we seethatthe continuedfractionexpansiondoesindeedconverge
to theirrationalnumberit is meantto be approximating.

Theorem2If z isanirrationalnumberwith continuedractionexpansior{ag, a1, az, . . .| andcorvergents
{pr/qr}andn >1,and0 < ¢ < ¢, andfl—’ # 1;’—" with p, g integers,then

Pn
€r— —

dn

<l|r—~=

q

:

Thatis to say thenth corvergentis thefractionamongall fractionswith denominatorsio greaterthan
gn Which providesthe bestapproximationto z. It is commonto usethe size of the denominatorasa
measuref the‘complexity’ of therationalnumber Thus,we have thatthe n convergentis optimalfor
agivencompleity.

Whatdoesthis sayfor our musicalproblem?Recallthatthetroublesomesquation2” = 3Y is equiv-
alentto the equation2* = 3, providedwe userationals,andnot justintegers. The ‘obvious’ solutionis



z = log,(3). We wantto approximatethis by a rationalnumber By directcomputationthe continued
fractionexpansionfor log,(3) is

[1,1,1,2,2,3,1,5,2,23,2,2,1,...].
Thefirst few corvergentsare:

L g 3 8 19 65 81 485
2 5 12 41 53 306
Thus,takingthe fourth approximation(startcountingat zero):

3= 210g2(3) ~ 219/12 .

Thatis to say we obtainthe perfectfifth, oneoctare up, by nineteersemitonesMoreover, thedenomina-
tor, beingtwelve, forcesusto have twelve semitonegeroctave. Thus,westernmusichasadoptedguite
by accident assumethefourth bestapproximatiorto a Pythagoreascaleusingequaltemperament.

Obviouslyit is possibleto have scaleghatcomefrom dividing anoctave into otherthantwelve pieces.
For instance,one commonChinesescalehasfive notesto the octave. This correspondgo the third
convergentof the continuedractionexpansion.An accident? don't know.

Goingin the otherdirection,we could usethe next moreaccuratecontinuedfraction approximation
of log,(3), which would lead to an octave consistingof forty-one pieces. Below is a comparisonof
what happengo somestandardntervalsin thesethreesystems.The fundamentalinterval for our stan-
dardtwelve-tonechromaticscaleis the semitone.Thereis no namefor the basicintervals of our other
chromaticscales.Sol will referto their basicintervalsmerelyas‘basicintervals’.

In thefollowing computationswe will repeatedlyuse

In(z In(z
log r5(7) = ln(2(1/)”) = nlniQ? = nlogy(z),

whichincludesthe formulafor computinglogarithmsin ary basein termsof naturallogarithms.

Now, if we computeexactlyin atwelve-tonescale we find:

e Thefifth islog 12;(3/2) = 1210g,(3/2) ~ 7.01955 ... ~ 7 basicintervals(semitones).
e Themajorthirdis 121og,(5/4) = 3.8631 ... =~ 4 basicintervals(semitones).

e Theminorthirdis 121log,(6/5) ~ 3.1564 . .. = 3 basicintervals(semitones).

If we useda five-tonescale thecomputatiorof the numberof basicintervalscorrespondingo aninterval
with aratio of I islog s5(I) = 51logy(I). Thuswe find:

Thefifth being5log,(3/2) ~ 2.924812. .. ~ 3 basicintervals.

Themajorthird being5 log,(5/4) = 1.60964 . . . &~ 2? basicintervals.

Thefourthbeing5log,(4/3) ~ 2.075187 ... ~ 2 basicintervals.
e Theminorthird being5log,(6/5) ~ 1.31517. .. ~ 1? basicintervals.

Thus, the major third andthe perfectfourth would be indistinguishablén an equal-temperedive-tone
scale.Here,the*?’ for the majorthird andminor third indicatethatthe roundingto the nearestntegeris
fairly inaccurate.

If we usedforty-onesemitonegeroctae, the computatioris log «i5(1) = 411log, (1), leadingto:



Thefifth being41log,(3/2) ~ 23.98346253 .. . ~ 24 basicintenals.

Themajorthird being41 log, (5/4) =~ 13.19905189. .. ~ 13 basicintervals.

Thefourth being41 log,(4/3) ~ 17.01653745 . .. = 17 basicintervals.
e Theminorthird being41log,(6/5) = 10.78441064 . . . ~ 11 basicintervals.

This type of scalehasa fairly good separatiorof the standardacousticallydistinct notes. | would
guesghatif we usedsuchascale our earswould betrainedto hearthedifferencebetweeradjacenbasic
intervals. However, this differenceis only %/2 = 21/4! x 1.0170497 . .., whichis 29 centsonly slightly
morethanthe Pythagoreagcomma.

Interestingly around40 B.C., King Fang,in China, discoseredthe sixth bestapproximationgiven
above. It is unlikely, of course that he actually usedcontinuedfractionsto do this, which makesit all
the moreremarkable.In particular Fang noticedthat fifty-three perfectfifths are very nearly equalto
thirty-one octaves. This leadsto whatis sometimegalledthe Cycleof 53. It canbe representedy a
spiral of fifths, replacingthe moreusualcircle of fifths.

3 The PythagoreanHammers

Westernmusichasadoptedcertainintervals asbasicto acoustics.The legendaboutthe sourceof some
of theseintenalsinvolvesPythagorasThe story hashim listeningto the soundof the hammersof four
smiths,which he foundto be quite pleasant.Upon investigationthe hammersveighed12, 9, 8, and6
pounds.Fromtheseweights,Pythagorasierivedtheintenals:

Theoctave: 12:6=2:1

The perfectfifth: 12:8=9:6=3:2
The perfectfourth: 12:9=8:6=4:3
Thewholestep: 9:8

| don't know. Maybe. It's hardto saywhatreally happenedwenty-sixcenturiesago. But this certainly
seemducky. Maybehewassitting in the samebathtub thatArchimedeswvassitting in four hundredyears
later Also, it is not clearwhetherthe hammerscontrol the toneor if it's the arvils that matter In the
presentwe canlook to seewhatmightbenaturalintervalsto construct Firstly, theoctaveis quite natural,
asadoublingof frequeng. As usual,wewill alsotakeits inverse halvingof frequeng, asequallynatural.
The next integral multiplication of frequeng is tripling, which leadsto the perfectfifth whencombined
with halving. Multiplying the frequeng by four is just going up two octares, so we alreadyhave that
in our system.The next naturaloperationis to multiply the frequeng by five. To remainin the original
octave, we needto combinethis with two halvings,leadingto theinterval of the majorthird.

Now it is not simply a preferencéor integersthat leadsto theseintervals. Thereis alsothe phe-
nomenorof overtones A vibrating string hasa fundamentatone,whosefrequeny f canbe calculated
from its length L, densityp andtensionT" accordingto a basicformulaof acoustics:

1 /T c

f

2L p 2L

wherec = /T'/p is the speedwith which thewave travelsalongthe string.

The string alsovibratesin othermodeswith lessintensity The existenceof theseothermodescan
be deducedmathematicallyby looking at the eigervaluesof differentialoperators.This is discussedn
almostPDE textbook. You could alsoconsultKnobel's little book [4]. From eitherthe mathematic®or
the physics,we discover that theseother modesare vibrationsat integer multiples of the fundamental

10



frequeng. Theincreasingsequenc®f suchfrequenciess calledthe harmonicseriesbasedon the given

fundamentafrequeng. Thefundamentafrequencg is alsocalledthefirstharmonicor thefirst modeof

vibration. Thefrequeng of the octare (twice that of the fundamental)s calledthe seconcharmonicor

thesecondmodeof vibration. Thethird harmonicis the perfectfifth oneoctare up from thefundamental.
And soit goes.Thus,theargumentfor preferringintervalsbasedn doubling,tripling andmultiplying by

fiveis actuallybasedon acousticsnotjustafondnesdor thenumbers2, 3 and>5.

The phenomenorof overtonesis an importantfactorin the quality of the soundof ary particular
instrument.Now, in theory, it mayappeathattheharmonicseriesfor a particularffundamentafrequeny
continuesthroughall the integers. However, this would surely produceunbearablalissonance.What
actually happenss that the intensity of the higherharmonicsdecreaseguite rapidly. Indeed,on some
instrumentst is difficult to discernbeyond the third harmonic. (My guitar, for instance.) Violins and
oboeshave stronghigherharmonicsJeadingto a ‘bright’ tone. Flutesandrecordershave weak higher
harmonics.Apparentlythe clarinethasstrongodd-numberedharmonicswhich is why it hasa ‘hollow’
tone. Beforevalveswereaddedto brassinstrumentsjt wasonly notescorrespondingo harmonicshat
couldbeplayedon theseinstruments.

Whendefiningthebasicacousticalntervals,aftertheintervalsbasedn multiplying by two, threeand
five, our choicesbecomemorearbitrary

¢ Theperfectfourth. Shouldwe go down a perfectfifth thenup anoctave, resultingin aninterval of
(3/2)(2) = 4/3? Or shouldwe do somethingelse?(Question:How is the perfectfourth relatedto
the perfectfifth?)

e Thewholetone.Why sit betterto gouptwo perfectfifths anddown anoctave, thatis, (3/2)(3/2)(1/2) =
9/8, ratherthan,say up two fifths anddown threemajorthirds: (3/2)(3/2) - (4/5)(4/5)(4/5) =
144/125? (Thereis a differenceof about41 centshere.)

e Theminorthird. Shouldwe use(4/5)(3/2) = 6/5, i.e. down amajorthird andup a perfectfifth,
or(2/3)(2/3)(2/3)(2)(2) = 32/27, i.e. down threefifths andup two octaves?

¢ Themajorthird. Onecouldevenarguethat (3/2)(3/2)(3/2)(3/2)(1/2)(1/2) = 81/64 is prefer
ableto 5/4, astheformeris obtainedby going up four perfectfifths thendown two octaves, thus
usingonly thedoublingandtripling rules.

For the sale of curiosity, we could investigatewhatwe obtainusingthe major third asthe basisfor
our computations The acousticmajor third is 5/4. Thus,the critical quantityis log,(5/4) = log,(5) —
log,(4). Sincelog,(4) is aninteger, the crux of the approximationis that of log,(5). The continued
fractionexpansionis

2,3,9,2,2,4,6,2,1,1,3,1,18].

Thecorvergentsare:
7 65 137 339 1493

3 28 59 146 643
Sincethreenotesare certainlytoo few for an octave, we would have beenstuckwith octaresof twenty-
eightnotes!l think Il stick with the perfectfifth andtwelve tonesperoctare.

4 SomeOther Commas

4.1 SyntonicComma

The syntonic(or Didymic) commais the differencebetweenfour perfectfifths andtwo octaresplus a
majorthird. Four perfectfifths correspondo (3/2)%. In thekey of C, thisis C — E. Two octavesplus

11



amajorthird correspondo 22 (5/4). In thekey of C this correspondso C —s C" — E”'. Comparethe
two frequenciesisingthe logarithmicscale to obtain

(3/2)*
log 1273 (W ~ 0.215062895967 . ..~ 21.5 cents.

4.2 Schisma

The schismais the differencebetweeneight perfectfifths plus one major third andfive octaves. Eight
perfectfifths plusonemajorthird correspondo (3/2)® (5/4). In thekey of C thisis

C—)G—)Dl—)Al%E”—)B"—)F"I#—)C""#—)G””#—)C"",

versusjust the jump of five octavesfrom C to C""", which correspondso 2° = 32. If we comparethe
two frequenciesisingour logarithmicscale we obtain

2)8(5/4
log 1273 (%) ~ 0.019537207879...~ 2 cents.

4.3 Diaschisma

The diastismais the differencebetweerfour perfectfifths plustwo major thirds andthreeoctaves. In
thekey of C thisisC - G — D' - A’ - E" - G"# — C"'. The computatiorof the comparison
boils down to: s

2

4.4 Mean-tonesystem

Onealternatve to equaltemperamenis the mean-tonesystemwhich seemgo have begunaround1500.
In meantemperamenthe fifth is 697 cents,asopposedo 700 centsin equaltemperamenor 701.955
centsfor the acousticallycorrectinterval. The mean-tonesystemfor tuning a pianois satishctoryin
keys that have only one or two sharpsor flats. But thereare problems. For instance G* = 772 cents
andA® = 814 cents But they oughtto be the same! This discrepang is calledthe wolf. While the
Pythagorearcomma,at 23.5 cents,is not discernibleby mostlisteners,the wolf, at 52 centsis quite
noticeable.

Beforeequaltemperamenwvaswidely acceptedkeyboardshadto accommodatéheseproblems.One
solutionwasonly to play simple piecesin the keys your instrumentcould handle. A secondsolution,
which wascertainlynecessaryor large andimportantorgans,wasto have divided keyboards.Thus,the
single key normally usedtoday for G* and A" would be split into two keys. Often, the back of one
key would be slightly raisedto improve the organists ability to play by touch. The mostextraordinary
keyboardl wasableto find a referenceo wasBosanques ‘GeneralizedeyboardHarmonium’built in
1876,which had53 keys peroctave!

5 Definitions

Chromatic Scale Thechromaticscalecontainsall the possiblepitchesin anoctave, asopposedo a
diatonicscale which containscombinationof whole tonesandsemitonesWhenusingoctaresdivided
into otherthantwelve intervals, the chromaticscalecontainsall the microtonesn the subdisision.

Enharmonics  An interval lessthana half step.
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Major Third  Forthepurpose®f thisdiscussionywetakeamajorthird to bedefinedastheinterval cor-
respondingo achangen frequeng by afactorof 5/4. In thekey of C, thisis theinterval (approximated
by!) C - E.

Minor Third  Forthepurpose®f thisdiscussionywe take aminorthird to bedefinedastheinterval cor-
respondingo achangen frequeng by afactorof 6/5. In thekey of C, thisis theinterval (approximated
by!) C — E.

Octave Theinterval correspondingo doublingthefrequeng.

Perfect Fifth  Theinterval correspondingo a changeof frequeng by afactorof 3/2. It is theinterval
separatinghefifth noteof a majorscalefrom thetonic.

Semitone A semitonds the basicinterval of the standardctare of westernmusic. Thatis to say it
is aninterval of 21/12 = /2. For the scalesof five, twelve andforty-onenotesthatarealsoconsidered
here,the semitoneis not quite asuseful. Instead we speakof the ‘basicinterval’. For the scaleobtained
by dividing the octave into five piecesthebasicinterval is 21/5. Generallyintervalsthatarenot obtained
from semitonesrecalledmicrotones

Temperament  For our purposestempeamentrefersto ary systemof definingthefrequencie®f the
notesin ascale beit chromatic diatonicor someothersortof scale.

Tonic  Thetonicis thefirst notein a key or scale. It is alsothe noteafter which the scaleis named,
hencethekeynote.
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