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It isanold (andwell-understood)problemin musicthatyoucan’t tuneapianoperfectly. To understand
why takesa tiny bit of mathematicsanda smatteringof physics.

1 The Physics

Let me begin by explaining the way a scaleis constructed.To avoid sharpsandflats (andto make the
diagramseasierto draw), I’ ll usethekey of C.So-calledmiddleC representsaparticularfrequency. There
arevariousstandardsfor fixing thestartingfrequency. For stringplayersin theU.S.,it is commonlydone
by fixing anA at440Hz. Elsewhere,otherpitchesarecommon.I will avoid thequestionentirely(almost)
by usingtheold trick of definingmy unitssothatmy middleC hasa frequency of 1.

Theareaof physicsin play hereis acoustics. Therearetwo rulesto begin with:

The Piano Axioms

1. Goingup oneoctavedoublesthefrequency.

2. Tripling thefrequency movesto theperfectfifth in thenext octave.

Axiom 1 impliesthat theC oneoctave up from middleC hasa frequency of 2. Axiom 2 saysthat in our
casethe G in the next octave hasa frequency of 3. In what follows, I will adda prime for eachoctave
abovemiddleC.

1

C

2

C’

3

G’
one octave the perfect fifth

in the second octave

By invertingtherule thatsaysthatthenoteoneoctaveaboveanothermusthavedoublethefrequency,
we canfill-in theperfectfifth in thefirst octave. It shouldhave half thefrequency of theG in thesecond
octave.

1



1

C

2

C’

3

G’G

3
2

one octave
the perfect fifth

in the second octave

Following Pythagoras,we cannow attemptto usethesetwo rulesto construct‘all the notes’,i.e., a
completeoctave. The perfectfifth in the key of G is D. Thuswe have, by tripling thenhalving, then
halvingagain:
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9

Perfect fifth

Note thatwe couldhave startedby tripling G ������� to obtainD � � �	�
��� , which would have savedusa
step.
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Now repeatagain:theperfectfifth in thekey of D is A. Thus,by tripling D ���
��
 , wearriveatA � ��������
 .
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Wecanshortenthisby lookingat theTableof Fifths,alsoknown astheCircleof Fifths(but thenyouneed
to know how to draw circulartablesin LATEX).

The Cir cleof Fifths

Tonic Fifth
C D E F G A B C
G A B C D E F# G
D E F# G A B C# D
A B C# D E F# G# A
E F# G# A B C# D# E
B C# D# E F# G# A# B
F# G# A# B C# D# E#=F F#
C# D# E#=F F# G#=A � A# B#=C C#

G#=A � A# B#=C C# D#=E � E#=F G G#
D#=E � E#=F G G# A#=B � B#=C D D#
A#=B � B#=C D D# E#=F G A A#
E#=F G A A# B#=C D E E#=F

C D E F G A B C

If weusetheruleof doubling/halvingfor octaves,wearriveatthefollowing frequenciesfor thetwelve
notesin ourbasicoctave:

Frequency Tonic

1 C
3/2 G
9/8 D

27/16 A
81/64 E

243/128 B
729/512 F#

2187/1024 C#
6561/4096 G#=A �
19683/8192 D#=E �
59049/32768 A#=B �

177147/131042 E#=F
531441/262144 C
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However, therearesomerulesof acousticsthatmight alsobeused.� Thefrequency of theperfectfifth is 3/2 thatof thetonic.� Thefrequency of thetonic at theendof theoctaveis twice thatof theoriginal tonic.� Thefrequency of theperfectfourth is 4/3 thatof thetonic.� Thefrequency of themajor third is 5/4 thatof thetonic.� Thefrequency of theminor third is 6/5 thatof thetonic.

Notethat therulesfor thelastthreerulesarenot consequencesof our two axioms.Usingtheserulesand
combiningthemasefficiently aspossible,onearrivesat thefollowing list of frequenciesfor thenotesin
theC majorscale.

Note Acoustics Up by fifths, down by octaves

C 1 1
D �
��
 �
��

E � ��� 
��������
F ����� �����������������������
�
G �
��� �
���
A � ��� �
�������
B � � ��
 �����
������

C � � ��� �����������
�������

Noticethatsomeof thesefractionsarenotequal!In particular, thefinalC in thescaleoughtto havefre-
quency twicethebasicC. Instead,if wegowaaaayupby fifths, thenbackdown againby octaves,wehave
this strangefraction, ����� ���!����������� ��� , whosedecimalexpansionis (exactly): ��" �
������
�� � ��� � �!� ��� � ��� � . If
we tookhalf of this to returnto ourstartingpoint,we wouldhave:� ��� ������� � ���
��
�
#�$��" ����������������������� � ����
���� �
This discrepancy is known asthePythagorean(or ditonic) Comma. Sowhat is theproblem?To answer
this, it is time to considersomemathematics.

2 The Mathematics

Theessenceof thecomparisonis thatwe wentup twelve perfectfifths, which is equivalentto changing

thestartingfrequency from 1 to

% � �'&)(+* � � ��� ���!����
����� ��������",���
��������
�������� � . Thisshouldproduceanother

copy of the note C, but seven octaves up. Thus, we shouldcomparethis frequency with ��-.�/����
 .
The problemis thatwe aremixing a functionbasedon tripling (for thefifths) with a functionbasedon
doubling(for octaves). More abstractly, we aretrying to solve anequationof the type: ��01�2��3 where4 and 5 arerationalnumbers.(With minor finagling,we could restrictto just integers.) Notice that for
differentnotesin our chromaticscale(cf. 6 5), we will be usingdifferent(andinequivalent)valuesof 4
and 5 . Thefirst issueto contendwith regardingthedifficulty of notesnot agreeingwith themselves(that
is to say, enharmonicsthat have different frequencies)is to make a choiceof whereto concentratethe
errors.Therearewaysof tuninganinstrumentsothatsomekeys have only slight problems,while other
keyshaveratherbaddiscrepancies.(SeeSection4.4below.)
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2.1 Equal Temperament

Themethodthatwesternmusichasadoptedis to usethesystemof equal temperament (alsoknown as
eventemperament) wherebytheratio of thefrequenciesof any two adjacentnotesof thechromaticscale
(i.e. semitones) is constant,with theonly interval that is acousticallycorrectbeingtheoctave. It is not
clearwhenthis wasoriginally developed.Bachcertainlywent a long way to popularizeit, writing two
seriesof twenty-fourpreludesand fuguesfor keyboardin eachof the twelve major and twelve minor
keys. Theseareknown astheWell-temperedClavier. Somepeopleclaim thatBachactuallyinventedthe
systemof eventemperament.However, guitarsin Spainwereevenly temperedat leastasearlyas1482,
long beforeBachwasborn. Beethovenalsowroteworks that took advantageof equaltemperament,for
instance,his Opus39(1803)Two preludesthroughthetwelvemajor keysfor pianoor organ.

Eventemperamentspreadstheerroraroundin two ways.

1. Theerrorsin any particularkey aremoreor lessevenlyspreadabout.

2. No keys arebetteroff thanany others.With alternative meansof tempering,suchasjust temper-
amentor mean temperament (cf. 6 4.4), roughly four (out of a possibletwelve) major keys are
clearlybetterthantheothers.

Sincewesternmusichassettledonachromatic scaleconsistingof twelvesemitones, wecancompute
thenecessaryratio, 7 . Sincetwelve intervalswill makeanoctave,wemusthave7 (+* ��� �98 7 �;:=<> �)��� (@?A(+* "
This leavesus with the following valuesfor our C-majorscale. (The tableincludesa comparisonwith
acousticalvalues.)

Note Acoustics EqualTemperament

C 1 1
D �
��
 � ��"B��� � 7 *DC ��"B�������
�
E � ��� � ��"E� � 7�F C ��"E� � ���
�
F ����� � ��" �����#" " " 7�G C ��" ������
��
G �
��� � ��" � 7 - C ��" ����
����
A � ��� � ��" �����#" " " 7�H C ��" ��
������
B � � ��
 � ��" 

� � 7 (I( C ��" 
�

��� �
C � 7 (J* �K�

If we do this with a “440” A andadjustso that thetonic C is acousticallycorrectwith respectto this A,
we arriveat thefollowing table:

Note Acoustics EqualTemperament

C ����� Hz ������� 7 H C ������" �
���
D ���
� Hz ������� 7 - C ������" ��� �
E ����� Hz ������� 7�G C �
����" �
��

F � � � Hz ������� 7�F C ������" ����

G ����� Hz ������� 7 *#C ������" ��� �
A ����� Hz ���
�
B �
� � Hz ���
� 7 *#C �
����" 
�
��
C � ��
 Hz ���
� 7�L C � ����"E� � �

It is naturalto usea logarithmicscalefor measuringintervalsin our musical/acousticalsetting,since
intervals correspondto ratios. The basicunit in our diatonicscale,the semitone,in equaltemperingis
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equalto 100cents. Thus,onesemitoneequals100centsandanoctaveequals1200cents.Wecanmeasure
thePythagoreancommain termsof cents.Thediscrepancy was:% � � &)(+* C ������",������"M"B"� - � ����


Thismeansthatcentsaremeasuredin a logarithmicscalewith basethetwelfth rootof two. (Really!)
Therefore,our discrepancy, in hundredsof centsis:NMO�P :Q<R *

%#S ������T (J*� - & � �NBU S :=<> �VT NBU %#S �
����T (J*� - & � ���NBU � NBU %#S ������T (+*� - & "
After a little algebra,weseethatthis is equalto� ��� NBU �NBU �1W ����
 C ��"E������������������
 � "�" " C ����" � cents"
This differenceis sosmall thatmostpeoplecannothearit. However, many musicians,particularlystring
players,aresensitive to suchdifferences.Following up on thealgebraof theprecedingproblem,we see
thataninterval correspondingto theratio X equals�������9Y Z�[M\^]Y Z * �$������� NMO�P * S X T cents.Thiswill simplify the
formulasgivenbelow for theothercommas.

Thereareothercommas:The syntonic(or Didymic) commais the differencebetweenfour perfect
fifths andtwo octavesplusa major third. ThesyntoniccommaoccursmoreeasilythanthePythagorean
commaor the schisma,sinceonedoesn’t needto go throughparticularly many chordprogressionsto
move throughfour perfectfifths. If youwould like to hearwhata syntoniccommasoundslike, I heartily
recommendErich Neuwirth’s book [5] and the software that comeswith it. In [2], we show how the
syntoniccommaarisesin a songby Madonna.Theschismais thedifferencebetweeneightperfectfifths
plus onemajor third andfive octaves. The diaschismais the differencebetweenfour perfectfifths plus
two major thirds andthreeoctaves. The computationsaregiven in Section4. It shouldbe clearat this
point thatmost(indeedalmostall) of theacousticintervalswill beimperfectin anequallytemperedscale.
What is gained,though,is that noneof the errorsis particularly large. Let me comeback to someof
thedetailsof eventemperamentafteraddressinganotherissue.Namely, why shouldwe have twelvehalf
stepsin anoctaveanyway?

2.2 Continued Fractions

We will usethelogarithmbase� , which we denoteby
NBO�P * S 4 T . Thus,if 5 � NBO�P * S 4 T , then ��3_� 4 . The

heartof our problemwith fifths andoctavesis the attemptto solve the equation��0`�a��3 , where 4 and5 areintegersor rationalnumbers.Notice,if we’re usingrationalnumbersit is anequivalentproblemto
solve theequation��bD�K� .

If we take logarithmsbase2 of bothsidesof thetroublesomeequation,weareleft with theequation4 NMO�P * S ��Tc� 5 NMO�P * S ��Td"Of course,since
NBO�P * S ��Tc��� , theequationreducesto:4 � 5 NBO�P * S ��T or

4 5 � NBO�P * S ��Te"
Wethentry to solvethis for integer(or rational)valuesof 4 and 5 . Unfortunately,

NBO�P * S ��T is notarational
number. The bestwe cando is to try to approximateit by a rationalnumber. Pluggingthis into my
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calculator, I get the decimalapproximation: ��" � 
������
� � ���
����� . (Note: this is anapproximation;the real
decimalgoeson andon andon andon.) A good– andwell-known – way to approximatean irrational
numberby a rationalnumberis by continuedfractions.

A continued fraction is anexpressionof theform:f
gih �f ( h (j <Ik :l+m^n :l+oIn�p p p
wheref g�q f ( q f * q " "�" areintegers.Usingthis form (with only � s in thenumerators)meanswewill only be
consideringsimple continuedfractions.For notationalconvenience,write r f g�q f ( q f * q "B"B" s for the infinite
continuedfraction above. Of course,it is alsopossibleto considerfinite continuedfractions. It is an
exerciseto seethat any rationalnumbercanbe expressedasa finite continuedfraction. I refer you to
Hardy andWright’s book [3] for a discussionof theuniquenessof suchanexpression.If we cut off an
infinite continuedfractionafter t terms,wehavethe t th convergent. For theinfinite continuedfraction
givenabove,this is f
guh �f ( h (j <Jk :l+m^n :p p p n :lJv
which is denotedr f g�q f ( q f * q " "�" q f�w s . This is obviously a rationalnumber, which we write (in reduced

form) as x wy w . Thereis a convenientalgorithmfor computingthecontinuedfractionexpansionof a given

positive number4 , calledthe continued fraction algorithm . For any positive numberz , let r z s denote
theintegerpartof z . To computea continuedfractionexpansionfor 4 , take f�g � r 4 s . So4 � f g h.4 g
and �|{ 4 g~} � . Now write �4 g � f ( h.4 ( with f ( � r ��� 4 g s
and �4 ( � f * h.4 * with f * � r ��� 4 ( s
andsoon. Thenumbersf g , f ( , f * , etc. arenon-negative integers,which go into thecontinuedfraction
expansion.The‘remainders’,4 g , 4 ( , 4 * , etc.,arerealnumberswith ��{ 4�� } � .
2.3 Someexamples

In what follows, thenotationfor a repeatingcontinuedfraction is similar to that for a repeatingdecimal
expression.For thecontinuedfraction r � q@��q@��q@��q@��q " " " s , we write r � q#�� s .� > �~� r � q � q � q � q "B"M" s!� r � q ���s with convergents:� � � �� ������ �!���� "�" "
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� � h > �� � r � q � q � q � q � q "M"B" s!� r �� s with convergents:��� �� �� 
 � ���
 ������ ������ ������ "�" "
Noticethatthenumeratorsanddenominatorsof theconvergentsaresuccessiveFibonaccinumbers.
If youstartsimplifying theconvergentsof thecontinuedfraction r � q � q � q � q "B"M" s asarationalnumber,
you will soonseewhy this is so. Try it! Also, it is a well-known fact that the ratio of successive
Fibonaccinumbersis indeedthe golden mean ( k R G* . That is to say, this particularcontinued
fractiondoesindeedconvergeto theirrationalnumberit is supposedto represent.�.� � r � q � q � q � q � q � q � q � q � q � q � q 
 q � q � q ��� q "B"B" s with convergents:��� 
� ���� ���� 

���� �������� �������� ��������
� � � � � �� ��� �������������� "�" "
Remarkably, the patternin the continuedfraction expansionfor � actuallypersists.Perhapsless
remarkably:it is not particularlyeasyto provethis.��� � r � q � q � � q � q ����� q � q � q � q � q "B"M" s with convergents:� ���� ���������� � �������� �������������������� ����������
������� � ����
��������������� ��������
����� � �
� 
����
�������� � ��
�� "�" "
The zero-thconvergentis familiar to certainstatelegislatures.The first convergentis familiar to
many schoolchildren,at leastit wasknown beforethe dawn of handheldcalculators.Unlike the
continuedfractionexpansionfor � , thecompleteexpansionfor � is unknown.

Therearetwo theoremsthatarepertinentto ourdiscussion(cf. [3]):

Theorem 1 If 4 is an irrationalnumberwith continuedfractionexpansionr f
g q f ( q f * q " "�" s andconver-
gents� x'� � y ��� and ��� � , then ���� 4 W x!�y �

���� } �y � y � k ( } �y � * "
Sincethe denominatorof the

S � h ��T st convergentis strictly larger thanthe denominatorof the � th

convergent(andthey areall integers),we seethatthecontinuedfractionexpansiondoesindeedconverge
to theirrationalnumberit is meantto beapproximating.

Theorem2 If 4 is anirrationalnumber, with continuedfractionexpansionr f g
q f ( q f * q " " " s andconvergents� x�� � y ��� and ��� � , and � } y { y � and � ���� � �� � with x q y integers,then���� 4 W x!�y �
���� } ���� 4 W x y ���� "

Thatis to say, the � th convergentis thefractionamongall fractionswith denominatorsnogreaterthany � which providesthe bestapproximationto 4 . It is commonto usethe sizeof the denominatorasa
measureof the‘complexity’ of therationalnumber. Thus,we have that the � th convergentis optimal for
a givencomplexity.

Whatdoesthis sayfor our musicalproblem?Recallthat thetroublesomeequation��0|����3 is equiv-
alentto theequation��b|�	� , providedwe userationals,andnot just integers.The ‘obvious’ solutionis
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� � NMO�P * S ��T . We want to approximatethis by a rationalnumber. By direct computation,the continued
fractionexpansionfor

NBO�P * S ��T is r � q � q � q � q � q � q � q � q � q ��� q � q � q � q "B"M" s�"
Thefirst few convergentsare: ��� �� 
 � ������ � ���� 
��� � �

 ������ "�" "
Thus,takingthefourth approximation(startcountingat zero):����� Y �I� < [ L ] C � ( H ?A(J* "
Thatis to say, weobtaintheperfectfifth, oneoctaveup,by nineteensemitones.Moreover, thedenomina-
tor, beingtwelve, forcesusto have twelve semitonesperoctave. Thus,westernmusichasadopted,quite
by accidentI assume,thefourth bestapproximationto aPythagoreanscaleusingequaltemperament.

Obviously it is possibleto havescalesthatcomefrom dividing anoctaveinto otherthantwelvepieces.
For instance,one commonChinesescalehasfive notesto the octave. This correspondsto the third
convergentof thecontinuedfractionexpansion.An accident?I don’t know.

Going in theotherdirection,we couldusethenext moreaccuratecontinuedfractionapproximation
of

NMO�P * S �
T , which would lead to an octave consistingof forty-one pieces. Below is a comparisonof
what happensto somestandardintervals in thesethreesystems.The fundamentalinterval for our stan-
dardtwelve-tonechromaticscaleis the semitone.Thereis no namefor the basicintervalsof our other
chromaticscales.SoI will referto their basicintervalsmerelyas‘basicintervals’.

In thefollowing computations,wewill repeatedlyuseNMO�P �R * S 4 T�� NBU S 4 TNMU S � (@? � T � � NBU S 4 TNMU S ��T � � NBO�P * S 4 T q
which includestheformulafor computinglogarithmsin any basein termsof naturallogarithms.

Now, if wecomputeexactly in a twelve-tonescale,we find:� Thefifth is
NBO�P :=<R * S �
����TV����� NBO�P * S ������T C ��" ����� ��� " " " C � basicintervals(semitones).� Themajorthird is ��� NBO�P * S � ����T C ��" 
������c"�" " C � basicintervals(semitones).� Theminor third is ��� NBO�P * S ��� � T C ��"B� � ���#"�" " C � basicintervals(semitones).

If weusedafive-tonescale,thecomputationof thenumberof basicintervalscorrespondingto aninterval
with a ratioof X is

NBO�PD�R * S X Tc� � NBO�P * S X T . Thuswe find:� Thefifth being � NBO�P * S ������T C ��" ������
�����"�" " C � basicintervals.� Themajorthird being � NMO�P * S � ���
T C ��" ���������#"�" " C � ?basicintervals.� Thefourthbeing � NBO�P * S �����
T C ��" �
� � ��
��i" "�" C � basicintervals.� Theminor third being � NMO�P * S �
� � T C ��" ��� � ���i"�" " C � ?basicintervals.

Thus, the major third andthe perfectfourth would be indistinguishablein an equal-temperedfive-tone
scale.Here,the‘?’ for themajorthird andminor third indicatethattheroundingto thenearestintegeris
fairly inaccurate.

If we usedforty-onesemitonesperoctave, thecomputationis
NMO�P o :R * S X T������ NBO�P * S X T , leadingto:
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� Thefifth being ��� NMO�P * S �
����T C ����" ��
������
� � �#" " " C ��� basicintervals.� Themajorthird being ��� NBO�P * S � ���
T C ����"M������� � ��
�� "�" " C ��� basicintervals.� Thefourthbeing ��� NMO�P * S �����
T C ����" ����� � ����� � " " " C ��� basicintervals.� Theminor third being ��� NBO�P * S ��� � T C ����"E��
����!�������#"�" " C ��� basicintervals.

This type of scalehasa fairly goodseparationof the standardacousticallydistinct notes. I would
guessthatif weusedsuchascale,ourearswouldbetrainedto hearthedifferencebetweenadjacentbasic
intervals.However, thisdifferenceis only

o :> �~�K� (@? F ( C ��" ���������
�
�i"�" " , which is 29 cents,only slightly
morethanthePythagoreancomma.

Interestingly, around40 B.C., King Fang, in China,discoveredthe sixth bestapproximationgiven
above. It is unlikely, of course,that he actuallyusedcontinuedfractionsto do this, which makesit all
the moreremarkable.In particular, Fangnoticedthat fifty-three perfectfifths arevery nearlyequalto
thirty-oneoctaves. This leadsto what is sometimescalledthe Cycleof 53. It canbe representedby a
spiralof fifths, replacingthemoreusualcircleof fifths.

3 The PythagoreanHammers

Westernmusichasadoptedcertainintervalsasbasicto acoustics.The legendaboutthe sourceof some
of theseintervals involvesPythagoras.Thestoryhashim listeningto thesoundof thehammersof four
smiths,which he found to be quite pleasant.Upon investigation,the hammersweighed12, 9, 8, and6
pounds.Fromtheseweights,Pythagorasderivedtheintervals:

Theoctave: 12:6= 2:1
Theperfectfifth: 12:8= 9:6 = 3:2
Theperfectfourth: 12:9= 8:6 = 4:3
Thewholestep: 9:8

I don’t know. Maybe. It’s hardto saywhat really happenedtwenty-sixcenturiesago. But this certainly
seemslucky. Maybehewassitting in thesamebathtubthatArchimedeswassitting in four hundredyears
later. Also, it is not clearwhetherthe hammerscontrol the toneor if it’s the anvils that matter. In the
present,wecanlook to seewhatmightbenaturalintervalsto construct.Firstly, theoctaveis quitenatural,
asadoublingof frequency. As usual,wewill alsotakeits inverse,halvingof frequency, asequallynatural.
Thenext integral multiplicationof frequency is tripling, which leadsto theperfectfifth whencombined
with halving. Multiplying the frequency by four is just going up two octaves,so we alreadyhave that
in our system.Thenext naturaloperationis to multiply thefrequency by five. To remainin theoriginal
octave,weneedto combinethiswith two halvings,leadingto theinterval of themajorthird.

Now it is not simply a preferencefor integersthat leadsto theseintervals. Thereis also the phe-
nomenonof overtones. A vibratingstringhasa fundamentaltone,whosefrequency ¡ canbecalculated
from its length ¢ , density£ andtension¤ accordingto abasicformulaof acoustics:

¡ ( � �� ¢¦¥ ¤ £ � §� ¢
where § �	¨ ¤ � £ is thespeedwith which thewave travelsalongthestring.

The string alsovibratesin othermodeswith lessintensity. The existenceof theseothermodescan
be deducedmathematically, by looking at the eigenvaluesof differentialoperators.This is discussedin
almostPDE textbook. You couldalsoconsultKnobel’s little book [4]. Fromeitherthe mathematicsor
the physics,we discover that theseothermodesarevibrationsat integer multiplesof the fundamental
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frequency. Theincreasingsequenceof suchfrequenciesis calledtheharmonicseriesbasedon thegiven
fundamentalfrequency. Thefundamentalfrequencey is alsocalledthefirst harmonicor thefirst modeof
vibration. Thefrequency of theoctave (twice thatof the fundamental)is calledthesecondharmonicor
thesecondmodeof vibration. Thethird harmonicis theperfectfifth oneoctaveupfrom thefundamental.
And soit goes.Thus,theargumentfor preferringintervalsbasedondoubling,tripling andmultiplying by
five is actuallybasedon acoustics,not just a fondnessfor thenumbers2, 3 and5.

The phenomenonof overtonesis an importantfactor in the quality of the soundof any particular
instrument.Now, in theory, it mayappearthattheharmonicseriesfor aparticularfundamentalfrequency
continuesthroughall the integers. However, this would surely produceunbearabledissonance.What
actuallyhappensis that the intensityof the higherharmonicsdecreasesquite rapidly. Indeed,on some
instrumentsit is difficult to discernbeyond the third harmonic. (My guitar, for instance.)Violins and
oboeshave stronghigherharmonics,leadingto a ‘bright’ tone. Flutesandrecordershave weakhigher
harmonics.Apparentlytheclarinethasstrongodd-numberedharmonics,which is why it hasa ‘hollow’
tone. Beforevalveswereaddedto brassinstruments,it wasonly notescorrespondingto harmonicsthat
couldbeplayedon theseinstruments.

Whendefiningthebasicacousticalintervals,aftertheintervalsbasedonmultiplying by two, threeand
five,our choicesbecomemorearbitrary.� Theperfectfourth. Shouldwe go down a perfectfifth thenup anoctave, resultingin aninterval ofS �
����T S ��Tc�K����� ? Or shouldwe do somethingelse?(Question:How is theperfectfourth relatedto

theperfectfifth?)� Thewholetone.Why is it bettertogouptwoperfectfifthsanddownanoctave,thatis,
S ������T S ������T S ������T©�����
 , ratherthan,say, up two fifths anddown threemajor thirds:

S �
����T S �
����T«ª S ��� � T S ��� � T S ��� � Ti������������ � ? (Thereis a differenceof about41 centshere.)� Theminor third. Shouldwe use
S ��� � T S �
����Tu���
� � , i.e. down a major third andup a perfectfifth,

or
S �����
T S �����
T S �����
T S ��T S ��T¬���
�����
� , i.e. down threefifths andup two octaves?� Themajor third. Onecouldevenarguethat

S �
����T S �
����T S �
����T S �
����T S ������T S ������T��	
�������� is prefer-
ableto � ��� , asthe former is obtainedby goingup four perfectfifths thendown two octaves,thus
usingonly thedoublingandtripling rules.

For thesake of curiosity, we could investigatewhatwe obtainusingthemajor third asthe basisfor
our computations.Theacousticmajor third is � ��� . Thus,thecritical quantityis

NBO�P * S � ����T � NBO�P * S � T WNMO�P * S �
T . Since
NBO�P * S ��T is an integer, the crux of the approximationis that of

NBO�P * S � T . The continued
fractionexpansionis r � q � q � q � q � q � q � q � q � q � q � q � q ��
�s
"
Theconvergentsare: �� � ���
 ������ � ���������� � �
������
� " " "
Sincethreenotesarecertainlytoo few for anoctave, we would have beenstuckwith octavesof twenty-
eightnotes!I think I’ ll stick with theperfectfifth andtwelve tonesperoctave.

4 SomeOther Commas

4.1 SyntonicComma

The syntonic(or Didymic) commais the differencebetweenfour perfectfifths andtwo octavesplus a
majorthird. Fourperfectfifths correspondto

S �
����T F . In thekey of C, this is C W!­ E� � . Two octavesplus
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amajorthird correspondto � * S � ���
T . In thekey of C thiscorrespondsto C W�­ C� � W�­ E� � . Comparethe
two frequenciesusingthelogarithmicscale,to obtainNMO�P :=<R *

% S �
����T F� * S � ����T & C ��" ��� � ������
�� � �����u" " " C ����" � cents.

4.2 Schisma

The schismais the differencebetweeneight perfectfifths plus onemajor third andfive octaves. Eight
perfectfifths plusonemajorthird correspondto

S �
����TJ® S � ���
T . In thekey of ¯ this is¯ ­±°�­±² � ­ z � ­´³ � � ­´µ � � ­±¶ � � �@· ­ ¯ � � � �J· ­±° � � � �J· ­ ¯ � � � � �
versusjust the jump of five octavesfrom ¯ to ¯ � � � � � , which correspondsto � G �¸�
� . If we comparethe
two frequenciesusingour logarithmicscale,we obtainNBO�P :Q<R *

% S �
����TJ® S � ���
T�
� & C ��" ����� � �������
��
���� "�" " C � cents.

4.3 Diaschisma

Thediaschismais thedifferencebetweenfour perfectfifths plus two major thirdsandthreeoctaves. In
thekey of ¯ this is ¯ ­¹°º­¹² � ­ z � ­/³ � � ­/° � �J· ­ ¯ � � � . Thecomputationof thecomparison
boils down to: NBO�P :=<R *

% � LS �
����T F S � ���
T * & C ��"M��� ��� " " " C ��� cents.

4.4 Mean-tonesystem

Onealternative to equaltemperamentis themean-tonesystem, which seemsto have begunaround1500.
In meantemperament,the fifth is 697 cents,asopposedto 700 centsin equaltemperamentor 701.955
centsfor the acousticallycorrectinterval. The mean-tonesystemfor tuning a piano is satisfactory in
keys that have only oneor two sharpsor flats. But thereareproblems.For instance,G· �»����� cents
andA ¼ �½
�� � cents. But they ought to be the same! This discrepancy is called the wolf. While the
Pythagoreancomma,at 23.5 cents,is not discernibleby most listeners,the wolf, at 52 centsis quite
noticeable.

Beforeequaltemperamentwaswidely accepted,keyboardshadto accommodatetheseproblems.One
solutionwasonly to play simplepiecesin the keys your instrumentcould handle. A secondsolution,
which wascertainlynecessaryfor largeandimportantorgans,wasto have dividedkeyboards.Thus,the
single key normally usedtoday for G· andA ¼ would be split into two keys. Often, the back of one
key would be slightly raisedto improve the organist’s ability to play by touch. The mostextraordinary
keyboardI wasableto find a referenceto wasBosanquet’s ‘GeneralizedKeyboardHarmonium’built in
1876,which had53 keysperoctave!

5 Definitions

Chromatic Scale Thechromaticscalecontainsall thepossiblepitchesin anoctave, asopposedto a
diatonicscale,which containscombinationsof wholetonesandsemitones.Whenusingoctavesdivided
into otherthantwelve intervals,thechromaticscalecontainsall themicrotonesin thesubdivision.

Enharmonics An interval lessthanahalf step.
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Major Third For thepurposesof thisdiscussion,wetakeamajorthird to bedefinedastheintervalcor-
respondingto achangein frequency by a factorof � ��� . In thekey of C, this is theinterval (approximated
by!) C ­ E.

Minor Third For thepurposesof thisdiscussion,wetakeaminorthird to bedefinedastheintervalcor-
respondingto achangein frequency by a factorof �
� � . In thekey of C, this is theinterval (approximated
by!) C ­ E¼ .
Octave Theinterval correspondingto doublingthefrequency.

Perfect Fifth Theinterval correspondingto achangeof frequency by a factorof �
��� . It is theinterval
separatingthefifth noteof a majorscalefrom thetonic.

Semitone A semitoneis the basicinterval of thestandardoctave of westernmusic. That is to say, it
is aninterval of � (@?A(+* � :=<> � . For thescalesof five, twelve andforty-onenotesthatarealsoconsidered
here,thesemitoneis not quiteasuseful. Instead,we speakof the‘basicinterval’. For thescaleobtained
by dividing theoctave into fivepieces,thebasicinterval is � (@? G . Generally, intervalsthatarenotobtained
from semitonesarecalledmicrotones.

Temperament For our purposes,temperamentrefersto any systemof definingthefrequenciesof the
notesin ascale,beit chromatic,diatonicor someothersortof scale.

Tonic The tonic is the first notein a key or scale. It is alsothe noteafter which the scaleis named,
hence,thekeynote.
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