login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005520 Smallest number of complexity n: smallest number requiring n 1's to build using + and *.
(Formerly M0523)
31
1, 2, 3, 4, 5, 7, 10, 11, 17, 22, 23, 41, 47, 59, 89, 107, 167, 179, 263, 347, 467, 683, 719, 1223, 1438, 1439, 2879, 3767, 4283, 6299, 10079, 11807, 15287, 21599, 33599, 45197, 56039, 81647, 98999, 163259, 203999, 241883, 371447, 540539, 590399, 907199 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Ed Pegg Jr, www.mathpuzzle.com, Apr 10 2001, notes that all the new terms are -1 mod 120. - That is, this holds at least for all terms from a(45) = 590399 up to the highest known term a(89) given in the b-file at the end of 2015. Comment clarified by Antti Karttunen, Dec 14 2015
Largest number of complexity n is given by A000792. - David W. Wilson, Oct 03 2005
After 1438 = 2 * 719, all elements through 8206559 are primes. Equivalently, except for a(4) = 4, a(7) = 10, a(10) = 22 and a(25) = 1438, we have a(1) through a(53) are all primes. - Jonathan Vos Post, Apr 07 2006
a(54)-a(89) are all primes. - Janis Iraids, Apr 21 2011
Previous observations (primes with property -1 mod 120) still hold. - Martins Opmanis, Oct 16 2009
The prime 353942783 = A189125(1) = 2*3 + (1 + 2^2*3^2)*(2 + 3^4(1 + 2*3^10)) is the smallest counterexample to Guy's first hypothesis on integer complexity. - Jonathan Vos Post, Mar 30 2012
The sequence A265360 (second smallest number of complexity n) seems to have similar properties. - Janis Iraids via Antti Karttunen, Dec 15 2015
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, Sec. F26 (related material).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kazuyuki Amano, Integer Complexity and Mixed Binary-Ternary Representation, 33rd Int'l Symp. Alg. Comp. (ISAAC 2022) Leibniz Int'l Proc. Informatics (LIPIcs) Vol. 248.
J. Arias de Reyna, Complejidad de los números naturales, Gaceta R. Soc. Mat. Esp., 3 (2000), 230-250.
J. Arias de Reyna, Complejidad de los números naturales, Gaceta R. Soc. Mat. Esp., 3 (2000), 230-250. [Cached copy, with permission]
J. Arias de Reyna, Complexity of natural numbers, arXiv:2111.03345 [math.NT], 2021. See also Integers (2024) Vol. 24, A19, p. 6.
J. Arias de Reyna and J. van de Lune, The question "How many 1's are needed?" revisited, arXiv preprint arXiv:1404.1850 [math.NT], 2014.
Jānis Iraids, Kaspars Balodis, Juris Čerņenoks, Mārtiņš Opmanis, Rihards Opmanis, and Kārlis Podnieks, Integer complexity: experimental and analytical results, arXiv:1203.6462 [math.NT], 2012.
Ed Pegg Jr., Math Games: Integer Complexity, www.mathpuzzle.com, April 12, 2004.
D. A. Rawsthorne, How many 1's are needed?, Fib. Quart. 27 (1989), 14-17.
Eric Weisstein's World of Mathematics, Integer Complexity
EXAMPLE
Examples from Piotr Fabian:
1 = 1, 1 "one": first 1, a(1) = 1
2 = 1+1, 2 "ones": first 2, a(2) = 2
3 = 1+1+1, 3 "ones": first 3, a(3) = 3
4 = 1+1+1+1, 4 "ones": first 4, a(4) = 4
5 = 1+1+1+1+1, 5 "ones": first 5, a(5) = 5
6 = (1+1)*(1+1+1), 5 "ones"
7 = 1+((1+1)*(1+1+1)), 6 "ones": first 6, a(6) = 7
8 = (1+1)*(1+1+1+1), 6 "ones"
9 = (1+1+1)*(1+1+1), 6 "ones"
10 = 1+((1+1+1)*(1+1+1)), 7 "ones": first 7, a(7) = 10
11 = 1+(1+(1+1+1)*(1+1+1)), 8 "ones": first 8, a(8) = 11
12 = (1+1)*((1+1)*(1+1+1)), 7 "ones"
MAPLE
N:= 100000: # to get all terms <= N
R:= Vector(N):
R[1]:= 1: A[1]:= 1:
for n from 2 to N do
inds:= [seq(n-i, i=1..floor(n/2))];
m:= min(R[1..floor(n/2)] + R[inds]);
for d in select(`<=`, numtheory:-divisors(n), floor(sqrt(n))) minus {1} do
m:= min(m, R[d]+R[n/d])
od;
R[n]:= m;
if not assigned(A[m]) then A[m]:= n fi;
od:
seq(A[m], m=1..max(R)); # Robert Israel, Dec 14 2015
MATHEMATICA
nn = 10000;
R = Table[0, nn];
R[[1]] = 1; Clear[A]; A[1] = 1;
For[n = 2, n <= nn, n++,
inds = Table[n-i, {i, 1, n/2}];
m = Min[R[[1 ;; Floor[n/2]]] + R[[inds]]];
Do[
m = Min[m, R[[d]] + R[[n/d]]], {d,
Select[Rest[Divisors[n]], # <= Sqrt[n]&]}
];
R[[n]] = m;
If[!IntegerQ[A[m]], A[m] = n];
];
Table[A[m], {m, 1, Max[R]}] (* Jean-François Alcover, Aug 05 2018, after Robert Israel *)
PROG
See the Python program by Tim Peters at A005421.
(MATLAB)
N = 10^6;
fact = cell(1, N);
for n = 2:sqrt(N)
for m = [n^2:n:N]
fact{m} = [fact{m}, n];
end
end
R = zeros(1, N);
R(1) = 1;
A(1) = 1;
mmax = 1;
for n = 2:N
m = min(R(1:floor(n/2)) + R([n-1:-1:ceil(n/2)]));
if numel(fact{n}) > 0
m = min(m, min(R(fact{n}) + R(n ./ fact{n})));
end
R(n) = m;
if m > mmax
A(m) = n;
mmax = m;
elseif A(m) == 0
A(m) = n;
end
end
A % Robert Israel, Dec 14 2015
(Python)
def aupton(nn):
alst, R = [1], {0: {1}} # R[n] is set reachable using n+1 1's (n ops)
for n in range(1, nn):
R[n] = set(a+b for i in range(n//2+1) for a in R[i] for b in R[n-1-i])
R[n] |= set(a*b for i in range(n//2+1) for a in R[i] for b in R[n-1-i])
alst.append(min(R[n] - R[n-1]))
return alst
print(aupton(35)) # Michael S. Branicky, Jun 08 2021
CROSSREFS
Sequence in context: A133493 A265938 A182061 * A048183 A255641 A365093
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Corrected and extended by David W. Wilson, May 1997
Extended to terms a(40)=163259 and a(41)=203999 by John W. Layman, Nov 03 1999
Further terms from Piotr Fabian (PCF(AT)who.net), Mar 30 2001
a(68)-a(89) from Janis Iraids, Apr 20 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 06:49 EDT 2024. Contains 371964 sequences. (Running on oeis4.)