login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054995 A version of Josephus problem: a(n) is the surviving integer under the following elimination process. Arrange 1,2,3,...,n in a circle, increasing clockwise. Starting with i=1, delete the integer two places clockwise from i. Repeat, counting two places from the next undeleted integer, until only one integer remains. 19
1, 2, 2, 1, 4, 1, 4, 7, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 17, 20, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41, 44, 47, 50, 53, 56, 59, 62, 65, 68, 1, 4, 7, 10, 13, 16, 19, 22, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
If one counts only one place (rather than two) at each stage to determine the element to be deleted, the Josephus survivors (A006257) are obtained.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
R. Baumann, Das Josephus-Problem, LOG IN, Heft Nr. 165, pp. 70-71, 2010 (in German).
Ph. Dumas, Algebraic aspects of B-regular series. [Broken link]
Philippe Dumas, Algebraic aspects of B-regular series, Research Report, RR-1931, INRIA, 1993.
Ph. Dumas, Algebraic aspects of B-regular series, in: International Colloquium on Automata, Languages and Programming, ICALP 1993 (A. Lingas, R. Karlsson, S. Carlsson, eds.), pp. 457-468, Lecture Notes in Computer Science, vol. 700, Springer, Berlin, 1993.
L. Halbeisen and N. Hungerbühler, The Josephus Problem, J. Théor. Nombres Bordeaux 9 (1997), no. 2, 303-318.
Alasdair MacFhraing, Aireamh Muinntir Fhinn Is Dhubhain, Agus Sgeul Josephuis Is An Da Fhichead Iudhaich, [Gaelic with English summary], Proc. Royal Irish Acad., Vol. LII, Sect. A., No. 7, 1948, 87-93.
A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991.
FORMULA
a(n) = 3*n + 1 - floor(K(3)*(3/2)^(ceiling(log((2*n+1)/K(3))/log(3/2)))) where K(3) = (3/2)*K = 1.622270502884767... (K is the constant described in A061419); a(n) = 3n + 1 - A061419(k+1) where A061419(k+1) is the least integer such that A061419(k+1) > 2n.
a(1) = 1 and, for n > 1, a(n) = (a(n-1) + 3) mod n, if this value is nonzero, n otherwise.
a(n) = (a(n-1) + 2) mod n + 1. - Paul Weisenhorn, Oct 10 2010
EXAMPLE
a(5) = 4 because the elimination process gives (1^,2,3,4,5) -> (1,2,4^,5) -> (2^,4,5) -> (2^,4) -> (4), where ^ denotes the counting reference position.
a(13) = 13 => a(14) = (a(13) + 2) mod 14 + 1 = 2. - Paul Weisenhorn, Oct 10 2010
MATHEMATICA
(* First do *) Needs["Combinatorica`"] (* then *) f[n_] := Last@ InversePermutation@ Josephus[n, 3]; Array[f, 70] (* Robert G. Wilson v, Jul 31 2010 *)
Table[Nest[Rest@RotateLeft[#, 2] &, Range[n], n - 1], {n, 72}] // Flatten (* Arkadiusz Wesolowski, Jan 14 2013 *)
CROSSREFS
Cf. A181281 (with s=5). - Paul Weisenhorn, Oct 10 2010
Sequence in context: A268193 A238606 A325612 * A018219 A174714 A116633
KEYWORD
nonn
AUTHOR
John W. Layman, May 30 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 09:13 EDT 2024. Contains 371967 sequences. (Running on oeis4.)