Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 10 2024 11:59:13
%S 2,2,3,2,5,3,7,4,3,11,4,7,15,8,6,7,21,8,12,25,9,15,10,9,18,36,19,38,
%T 20,6,23,16,48,10,52,18,19,29,20,21,63,13,67,34,69,12,13,39,80,41,28,
%U 84,18,30,31,31,94,32,49,98,20,15,54,109,55,17,39,24,121,61,42,32,43,44,67,45,35,70,36,29,146,30,150
%N The least k such that prime(1+n)^k > 2 * prime(n)^k.
%C A000040(n)^a(n) = A378745(n) is always term of A337372, i.e., is primitively prime-shift abundant.
%H Antti Karttunen, <a href="/A378744/b378744.txt">Table of n, a(n) for n = 1..20000</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>.
%H <a href="/index/Pri#gaps">Index entries for primes, gaps between</a>.
%F a(n) = ceiling(log(2) / log(A000040(n+1)/A000040(n))).
%F For all n >= 1, A341609(A000040(n)^a(n)) = 1.
%e For n=1, prime(1)=2 and prime(2)=3, and 3^1 is not larger than 2*2^1, but 3^2 > 2*2^2, therefore a(1) = 2.
%e For n=3, prime(3)=5 and prime(4)=7, with 7 < 2*5, 7^2 = 49 < 2*25, and 7^3 = 343 > 2*125, therefore a(3) = 3.
%o (PARI) A378744(n) = { my(p=prime(n), q=prime(1+n)); for(k=-1+floor(log(2)/log(q/p)), oo, if(q^k > 2*(p^k), return(k))); };
%Y Cf. A000040, A001359, A003961, A337372, A341609, A378745 [= A000040(n)^a(n)].
%K nonn,new
%O 1,1
%A _Antti Karttunen_, Dec 08 2024