login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors d of n such that sigma(d) < 2*d < A003961(d), where A003961 is fully multiplicative with a(p) = nextprime(p).
2

%I #9 Dec 06 2024 10:25:39

%S 0,0,0,1,0,0,0,2,1,1,0,1,0,1,1,3,0,1,0,2,1,0,0,2,0,0,2,2,0,2,0,4,0,0,

%T 1,2,0,0,1,3,0,2,0,2,3,0,0,3,1,2,0,2,0,2,0,3,1,0,0,3,0,0,3,5,0,0,0,2,

%U 1,3,0,3,0,0,2,2,0,1,0,4,3,0,0,3,0,0,0,3,0,4,1,2,0,0,0,4,0,3,2,3,0,0,0,3,4

%N Number of divisors d of n such that sigma(d) < 2*d < A003961(d), where A003961 is fully multiplicative with a(p) = nextprime(p).

%C Number of terms of A341615 that divide n.

%H Antti Karttunen, <a href="/A378663/b378663.txt">Table of n, a(n) for n = 1..100000</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences related to prime indices in the factorization of n</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = Sum_{d|n} A341613(d).

%F a(n) = A337345(n) - A341620(n).

%F a(n) = A378662(n) - A080225(n).

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A341613(n) = ((sigma(n)<(2*n))&&((2*n)<A003961(n)));

%o A378663(n) = sumdiv(n,d,A341613(d));

%Y Inverse Möbius transform of A341613.

%Y Cf. A000203, A003961, A080225, A337345, A341615, A341620, A378662.

%K nonn,new

%O 1,8

%A _Antti Karttunen_, Dec 06 2024