login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of edge cuts in the n-Sierpinski gasket graph.
1

%I #9 Dec 04 2024 18:44:40

%S 4,352,120905728,2407558186389936749412352,

%T 14134769792236367387238791435785519303295716096758551664972849610340958208

%N Number of edge cuts in the n-Sierpinski gasket graph.

%H Christian Sievers, <a href="/A378591/b378591.txt">Table of n, a(n) for n = 1..7</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/EdgeCut.html">Edge Cut</a>.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiGasketGraph.html">Sierpinski Gasket Graph</a>.

%o (PARI) a(n)={my(c0=1,c2=1,c3=4);for(k=2,n,[c0,c2,c3]=[12*c0*c2*c3+14*c2^3+3*c2^2*c3,c0*c3^2+7*c2^2*c3+c2*c3^2,6*c2*c3^2+c3^3]);2^3^n-c3} \\ _Christian Sievers_, Dec 04 2024

%K nonn,new

%O 1,1

%A _Eric W. Weisstein_, Dec 01 2024

%E a(4) and beyond from _Christian Sievers_, Dec 04 2024