login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-digit terms in A377912.
4

%I #29 Dec 01 2024 19:34:09

%S 10,66,489,3631,26951,200045,1484850,11021410,81807240,607220362,

%T 4507138581,33454573430,248319075015,1843166918425,13681044394077,

%U 101548575900358,753751904485831,5594779921615960,41527672679871145,308242258385100002,2287951231622970075,16982489246315828049

%N Number of n-digit terms in A377912.

%C Also number of n-digit terms in A342042.

%C a(1149) has 1001 digits. - _Michael S. Branicky_, Nov 30 2024

%C The terms of A377912 as decimal digit strings are a regular language so can be counted using the transitions in a state machine matching those strings. - _Kevin Ryde_, Dec 01 2024

%H Michael S. Branicky, <a href="/A377917/b377917.txt">Table of n, a(n) for n = 1..1148</a>

%H Michael S. Branicky, <a href="/A377917/a377917.py.txt">Python program for A377917</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (5,15,20,15,6,1).

%F From _Kevin Ryde_, Dec 01 2024: (Start)

%F a(n) = 5*a(n-1) + 15*a(n-2) + 20*a(n-3) + 15*a(n-4) + 6*a(n-5) + a(n-6) for n>=8.

%F G.f.: -1 + x + (1+x)^4 / (1 - 5*x - 15*x^2 - 20*x^3 - 15*x^4 - 6*x^5 - x^6). (End)

%e The 66 two-digit terms in A377912 are

%e 10,11,12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,

%e 38,39,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,67,68,69,70,71,72,73,74,

%e 75,76,77,78,79,89,90,91,92,93,94,95,96,97,98,99.

%e There is an obvious division into 5 blocks of size 10 and blocks of sizes 7, 5, 3, and 1.

%t LinearRecurrence[{5, 15, 20, 15, 6, 1}, {10, 66, 489, 3631, 26951, 200045, 1484850}, 25] (* _Paolo Xausa_, Dec 01 2024 *)

%Y Cf. A342042, A377912.

%Y First differences of A377918.

%K nonn,base,easy,new

%O 1,1

%A _Sebastian Karlsson_ and _N. J. A. Sloane_, Nov 30 2024

%E a(6) and beyond from _Michael S. Branicky_, Nov 30 2024