%I #5 Nov 10 2024 05:37:23
%S 11,17,47,2663
%N Numbers k such that (21^k + 2^k)/23 is prime.
%C The definition implies that k must be a prime.
%C a(5) > 10^5.
%H P. Bourdelais, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;417ab0d6.0906">A Generalized Repunit Conjecture</a>.
%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
%H H. Dubner and T. Granlund, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/DUBNER/dubner.html">Primes of the Form (b^n+1)/(b+1)</a>, J. Integer Sequences, 3 (2000), #P00.2.7.
%H H. Lifchitz, <a href="http://www.primenumbers.net/Henri/us/MersFermus.htm">Mersenne and Fermat primes field</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>.
%t Select[Prime[Range[10000]], PrimeQ[(21^# + 2^#)/23] &]
%Y Cf. A057187, A057188, A062587, A062589, A127996, A127997, A128344, A204940, A217320, A225807, A228922, A229542, A375161, A375236, A377031.
%K nonn,hard,more
%O 1,1
%A _Robert Price_, Nov 09 2024