%I #11 Oct 01 2024 09:18:40
%S 120,1680,60060,83160,180180,240240,831600,900900,1081080,1627920,
%T 1663200,2522520,2882880,3603600,7567560,10090080,14414400,20180160,
%U 25225200,30270240,35814240,36756720,37837800,46558512,49008960,51482970,60540480,61261200,64864800
%N Numbers that occur exactly 5 times in A036038, i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly 5 integer partitions (x_1, ..., x_k).
%C Numbers m such that A376369(m) = 5, i.e., numbers that appear exactly 5 times in A376367.
%H Pontus von Brömssen, <a href="/A376375/b376375.txt">Table of n, a(n) for n = 1..10000</a>
%e 120 is a term, because it can be represented as a multinomial coefficient in exactly 5 ways: 120 = 120!/(1!*119!) = 16!/(2!*14!) = 10!/(3!*7!) = 6!/(1!*1!*1!*3!) = 5!/(1!*1!*1!*1!*1).
%Y Fifth row of A376370.
%Y Cf. A036038, A376367, A376369.
%K nonn
%O 1,1
%A _Pontus von Brömssen_, Sep 23 2024