login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} is the sequence b(1)=5/4, b(2*i)=3/2, b(2*i+1)=6/5 (i>0).
2

%I #19 Oct 20 2024 23:52:20

%S 2,5,17,341,92753,10753782821,92515075960384748177,

%T 10698799099944699918936107506299150093941,

%U 91571441744782016867976366392607084634231243149599342901251284090792487979854033

%N Lexicographically earliest sequence of positive integers a(1), a(2), a(3), ... such that for any n > 0, S(n) = Sum_{k = 1..n} b(k)/a(k) < 1, where {b(k)} is the sequence b(1)=5/4, b(2*i)=3/2, b(2*i+1)=6/5 (i>0).

%C This sequence and A376062 were discovered by Rémy Sigrist on Sep 09 2024. The two sequences {b(1)=7/6, b(k)=5/4 for k>1} and {b(1)=5/4, b(2*k)=3/2, b(2*k+1)=6/5 for k>0} are the first sequences {b(i)} discovered with the property that the sums S(n) do not converge to numbers of the form (e_n - 1)/e_n as n-> oo.

%H N. J. A. Sloane, <a href="https://www.youtube.com/watch?v=3RAYoaKMckM">A Nasty Surprise in a Sequence and Other OEIS Stories</a>, Experimental Mathematics Seminar, Rutgers University, Oct 10 2024, Youtube video; <a href="https://sites.math.rutgers.edu/~zeilberg/expmath/sloane85BD.pdf">Slides</a> [Mentions this sequence]

%e The initial values of S(n) are 5/8, 37/40, 677/680, 231877/231880, 21507565637/21507565640, 231287689900961870437/231287689900961870440, ...

%Y Cf. A004168, A082732, A374663, A375516, A375531, A375532, A375781, A375522, A376048-A376062, A376186.

%K nonn,base

%O 1,1

%A _N. J. A. Sloane_, Sep 15 2024.