%I #7 Sep 11 2024 00:45:58
%S 1,105,1176,4950,5713890
%N Numbers that can be written as a Narayana number (A001263) in at least 3 ways.
%C The first 5 terms are triangular numbers.
%C a(2), ..., a(5) can all be written as a Narayana number in exactly 4 ways.
%C a(6) > 2*10^35 (if it exists).
%e With T(n,k) = A001263(n,k):
%e 105 = T( 7,3) = T( 7, 5) = T( 15,2) = T( 15, 14);
%e 1176 = T( 9,4) = T( 9, 6) = T( 49,2) = T( 49, 48);
%e 4950 = T(11,4) = T(11, 8) = T( 100,2) = T( 100, 99);
%e 5713890 = T(92,3) = T(92,90) = T(3381,2) = T(3381,3380).
%o (Python)
%o from math import isqrt
%o from bisect import insort
%o from itertools import islice
%o def A010054(n):
%o return isqrt(m:=8*n+1)**2 == m
%o def A376001_generator():
%o yield 1
%o nkN_list = [(5, 3, 20)] # List of triples (n, k, A001263(n, k)), sorted by the last element.
%o while 1:
%o N0 = nkN_list[0][2]
%o c = 0
%o while 1:
%o n, k, N = nkN_list[0]
%o if N > N0:
%o if c >= 3 or A010054(N0): yield N0
%o break
%o central = n==2*k-1
%o c += 2-central
%o del nkN_list[0]
%o insort(nkN_list, (n+1, k, n*(n+1)*N//((n-k+1)*(n-k+2))), key=lambda x:x[2])
%o if central:
%o insort(nkN_list, (n+2, k+1, 4*n*(n+2)*N//(k+1)**2), key=lambda x:x[2])
%o def A376001_list(nmax):
%o return list(islice(A376001_generator(),nmax))
%Y Cf. A000217, A001263, A003015, A374796, A375573, A375999, A376000.
%K nonn,more
%O 1,2
%A _Pontus von Brömssen_, Sep 06 2024