Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 14 2024 06:49:39
%S 1,2,5,70,99,195,240,323,2378,2716,15015,48505,80782,130662,510068,
%T 672210,1926615,2744210,4116315,10278759,31320850,87347695,93222358,
%U 155904960,177385520,189539896,250637778,272607725,486471832,647562465,1620820270
%N Record values in A375970.
%C a(n) is the largest number whose square divides A000330(A375971(n)).
%F a(n) = A375970(A375971(n)).
%e a(3) = 5 because A375971(3) = 650 and 5^2 is the largest square dividing 650.
%e From _David A. Corneth_, Sep 13 2024: (Start)
%e 70 is in the sequence as A000330(24) = 24 * 25 * 49 / 6 = 4 * 25 * 49. The largest square dividing 4 is 4, the largest square dividing 25 is 25 and the largest square dividing 49 is 49.
%e So the largest k such that k^2 divides 4 * 25 * 49 is sqrt(4)*sqrt(25)*sqrt(49) = 2*5*7 = 70, a record. (End)
%p g:= proc(n) local t, s, F; t:= n*(n+1)*(2*n+1)/6;
%p F:= ifactors(t)[2];
%p mul(s[1]^floor(s[2]/2), s=F)
%p end proc:
%p V:= NULL; m:= 0: count:= 0:
%p for k from 1 while count < 20 do
%p v:= g(k);
%p if v > m then m:= v; V:= V,v; count:= count+1; fi
%p od:
%p V;
%Y Cf. A000330, A375970, A375971.
%K nonn
%O 1,2
%A _Robert Israel_, Sep 04 2024
%E a(25) from _Michael S. Branicky_, Sep 06 2024
%E a(26)-a(31) from _David A. Corneth_, Sep 08 2024