login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lexicographically earliest sequence of positive integers such that for any n > 0, Sum_{k = 1..n} 1/(k*a(n+1-k)) < 1.
3

%I #7 Aug 31 2024 08:32:17

%S 2,2,2,3,3,3,3,3,4,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,4,5,4,5,4,5,4,5,5,5,

%T 4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,6,5,5,5,

%U 6,5,5,6,5,5,6,5,6,5,6,5,6,5,6,5,6,5,6

%N Lexicographically earliest sequence of positive integers such that for any n > 0, Sum_{k = 1..n} 1/(k*a(n+1-k)) < 1.

%C This sequence is unbounded.

%H Rémy Sigrist, <a href="/A375834/b375834.txt">Table of n, a(n) for n = 1..10000</a>

%e The first terms, alongside the corresponding sums, are:

%e n a(n) Sum {k=1..n} 1/(k*a(n+1-k))

%e -- ---- ---------------------------

%e 1 2 1/2

%e 2 2 3/4

%e 3 2 11/12

%e 4 3 7/8

%e 5 3 107/120

%e 6 3 331/360

%e 7 3 299/315

%e 8 3 4931/5040

%e 9 4 4651/5040

%e 10 3 4993/5040

%e 11 4 26219/27720

%e 12 4 155389/166320

%e 13 4 201613/216216

%e 14 4 288793/308880

%e 15 4 2031847/2162160

%o (PARI) { for (n = 1, #a = vector(87), a[n] = floor(1/(1-sum(k = 2, n, 1/(k*a[n+1-k])))) + 1; print1 (a[n]", ");); }

%Y Cf. A374663, A375814, A375815.

%K nonn

%O 1,1

%A _Rémy Sigrist_, Aug 31 2024