%I #8 Jun 27 2024 09:04:43
%S 1,0,2,0,3,2,4,4,7,6,13,10,19,18,27,30,42,44,63,66,91,100,130,144,187,
%T 206,263,294,364,412,506,568,696,782,943,1070,1273,1444,1713,1936,
%U 2285,2586,3027,3428,3996,4516,5243,5924,6841,7730,8895,10030,11512,12966,14825,16696
%N Expansion of Product_{k>=1} 1 / (1 - x^(3*k-1))^2.
%F a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A078182(k) * a(n-k).
%F a(n) = Sum_{k=0..n} A035386(k) * A035386(n-k).
%F a(n) ~ exp(2*Pi*sqrt(n)/3) * Pi^(4/3) / (3^(3/2) * Gamma(1/3)^2 * n^(11/12)). - _Vaclav Kotesovec_, Jun 25 2024
%t nmax = 55; CoefficientList[Series[Product[1/(1 - x^(3 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A000712, A022567, A035386, A078182, A261616, A374019.
%K nonn
%O 0,3
%A _Ilya Gutkovskiy_, Jun 25 2024