login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of positive n-digit integers whose digit product is n.
1

%I #27 Jul 05 2024 11:10:27

%S 1,2,3,10,5,36,7,120,45,90,0,924,0,182,210,3860,0,3060,0,3800,420,0,0,

%T 61824,300,0,3627,10584,0,25230,0,375968,0,0,1190,441000,0,0,0,426400,

%U 0,70602,0,0,44550,0,0,11936496,1176,58800,0,0,0,1491102,0,1638560

%N The number of positive n-digit integers whose digit product is n.

%C Trivially, for the four single-digit primes p, a(p)=p.

%C It's not possible by definition to have a digit product equal to a prime number greater than 10, so a(p)=0 for prime p > 10.

%H Graham Holmes, <a href="/A373641/b373641.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 0 <=> n in { A068191 }.

%F a(n) > 0 <=> n in { A002473 }.

%F a(n) = A163767(n) for n <= 9.

%e a(4) = 10: 1114, 1122, 1141, 1212, 1221, 1411, 2112, 2121, 2211, 4111.

%p b:= proc(n, t, i) option remember; `if`(n=1, 1/t!, `if`(i<2, 0,

%p add(b(n/i^j, t-j, i-1)/j!, j=0..padic[ordp](n, i))))

%p end:

%p a:= n-> n!*b(n$2, 9):

%p seq(a(n), n=1..56); # _Alois P. Heinz_, Jun 12 2024

%Y Cf. A002033, A002473, A068191, A074206, A163767.

%K nonn,base

%O 1,2

%A _Graham Holmes_, Jun 12 2024