%I #11 Jun 26 2024 17:19:49
%S 1,1,0,1,0,1,0,0,0,1,2,1,0,0,0,1,5,1,6,0,0,1,8,0,0,0,10,1,1,1,0,0,0,0,
%T 0,1,0,0,2,1,5,1,3,6,0,1,2,0,9,0,5,1,4,0,1,0,0,1,8,1,0,12,0,0,13,1,9,
%U 0,3,1,0,1,0,3,11,0,17,1,7,0,0,1,12,0,0,0,4,1,6,0,15,0,0,0,12,1,13,7,0,1,3,1,12,11
%N a(n) = A003415(n) mod A001414(n), where A003415 is the arithmetic derivative, and A001414 is the sum of prime factors with multiplicity.
%H Antti Karttunen, <a href="/A373480/b373480.txt">Table of n, a(n) for n = 2..65537</a>
%t Array[Mod[If[#1 < 2, 0, #1 Total[#2/#1 & @@@ #2]], Total[Times @@@ #2]] & @@ {#, FactorInteger[#]} &, 120, 2] (* _Michael De Vlieger_, Jun 08 2024 *)
%o (PARI)
%o A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A373480(n) = (A003415(n)%A001414(n));
%Y Cf. A001414, A003415, A373364, A373481, A373482 (after its initial 1, positions of 0's in this sequence).
%K nonn,look
%O 2,11
%A _Antti Karttunen_, Jun 08 2024