login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).
6

%I #33 Jun 08 2024 08:53:43

%S 1,1,2,1,3,3,1,4,6,4,1,5,9,1,5,1,6,12,16,6,6,1,7,15,22,25,12,7,1,8,18,

%T 28,35,36,19,8,1,9,21,34,45,51,49,27,9,1,1,24,4,55,66,7,64,36,1,1,11,

%U 18,46,29,81,91,29,81,46,2,1,12,3,43,75,6,112,12,54,1,57,3

%N Square array read by ascending antidiagonals: T(n,k) = noz(T(n,k-1) + (k-1)*(n-2) + 1), with T(n,1) = 1, n >= 2, k >= 1, where noz(n) = A004719(n).

%C Row n is the zeroless analog of the positive n-gonal numbers.

%H Paolo Xausa, <a href="/A373169/b373169.txt">Table of n, a(n) for n = 2..11326</a> (first 150 antidiagonals, flattened).

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Polygonal_number">Polygonal number</a>.

%e The array begins:

%e n\k| 1 2 3 4 5 6 7 8 9 10 ...

%e ----------------------------------------------------

%e 2 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, ... = A177274

%e 3 | 1, 3, 6, 1, 6, 12, 19, 27, 36, 46, ... = A243658 (from n = 1)

%e 4 | 1, 4, 9, 16, 25, 36, 49, 64, 81, 1, ... = A370812

%e 5 | 1, 5, 12, 22, 35, 51, 7, 29, 54, 82, ... = A373171

%e 6 | 1, 6, 15, 28, 45, 66, 91, 12, 45, 82, ... = A373172

%e 7 | 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, ...

%e 8 | 1, 8, 21, 4, 29, 6, 43, 86, 135, 19, ...

%e 9 | 1, 9, 24, 46, 75, 111, 154, 24, 81, 145, ...

%e 10 | 1, 1, 18, 43, 76, 117, 166, 223, 288, 361, ...

%e ... | \______ A373170 (main diagonal)

%e A004719 (from n = 2)

%t noz[n_] := FromDigits[DeleteCases[IntegerDigits[n], 0]];

%t A373169[n_, k_] := A373169[n, k] = If[k == 1, 1, noz[A373169[n, k-1] + (k-1)*(n-2) + 1]];

%t Table[A373169[n - k + 1, k], {n, 2, 15}, {k, n - 1}]

%o (PARI) noz(n) = fromdigits(select(sign, digits(n)));

%o T(n,k) = if (k==1, 1, noz(T(n,k-1) + (k-1)*(n-2) + 1));

%o matrix(7,7,n,k,T(n+1,k)) \\ _Michel Marcus_, May 30 2024

%Y Cf. rows 2..6: A177274, A243658, A370812, A373171, A373172.

%Y Cf. A373170 (main diagonal).

%Y Cf. A004719, A057145.

%K nonn,tabl,base,easy

%O 2,3

%A _Paolo Xausa_, May 27 2024