Most circles with radius $r$ enclose fewer unit squares when they have an even number of rows ( $2^{*} r-2$ ) instead of a larger, odd number of rows ( $2^{*} r-1$ ).

For example, a circle with radius = 3 only encloses 18 squares when it has 4 rows, but encloses 21 squares when it has 5 rows.


Similarly, a circle with radius = 5 only encloses 64 squares when it has 8 rows, but encloses 65 squares when it has 9 rows.


But some circles (radius = 19, for example, and others in A373008) enclose more squares
when they have a smaller number of rows.


It looks unlikely because the 36-row version has those big gaps at the top and bottom and it's missing the entire 37 -square horizontal row in the middle, but it more than makes up for it with efficient packing elsewhere.

Here are larger versions for radius $=19$ for additional clarity:



Here's a closer look at a some tight fits in the 36 row diagram.
It looks close in the top row:


## 12 squares

But the radius is 19 and the close fit is 18 rows up: $\operatorname{Sqrt}\left(19^{\wedge} 2-18^{\wedge} 2\right)=6.082$ so there's room for 12 squares across.

Similarly, it looks tight in the 6th row:


## 36 squares

The radius is 19 and it's 6 rows up: Sqrt $\left(19^{\wedge} 2-6^{\wedge} 2\right)=18.027$ so there's room for 36 squares across.

It's also tight in the 4th row:


## 37 squares

The radius is 19 and it's 4 rows up: Sqrt $\left(19^{\wedge} 2-4^{\wedge} 2\right)=18.574$ so there's room for 37 squares across.

This plot shows how many more squares are enclosed by circles having a smaller, even number of rows, for radius $=1 . .500$. Fewer rows are more efficient for radius $=19,52,65,184,197,222,230,303,328,341,425$, and 489.

Squares enclosed by $2 r-2$ rows minus squares enclosed by $2 r-1$ rows, by radius


