login
a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^4.
5

%I #19 May 22 2024 01:56:17

%S 1,19,89,316,649,1691,2449,5104,7281,12331,14761,28124,28729,46531,

%T 57761,81856,83809,138339,130681,205084,217961,280459,280369,454256,

%U 406225,545851,590409,773884,708121,1097459,924481,1310464,1313729,1592371,1589401,2300796

%N a(n) = Sum_{1 <= x_1, x_2 <= n} gcd(x_1, x_2, n)^4.

%H Seiichi Manyama, <a href="/A372926/b372926.txt">Table of n, a(n) for n = 1..10000</a>

%H Peter Bala, <a href="/A368743/a368743.pdf">GCD sum theorems. Two Multivariable Cesaro Type Identities</a>.

%F a(n) = Sum_{1 <= x_1, x_2, x_3, x_4 <= n} gcd(x_1, x_2, x_3, x_4, n)^2.

%F a(n) = Sum_{d|n} mu(n/d) * d^2 * sigma_2(d), where mu is the Moebius function A008683.

%F From _Amiram Eldar_, May 21 2024: (Start)

%F Multiplicative with a(p^e) = p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1).

%F Dirichlet g.f.: zeta(s-2)*zeta(s-4)/zeta(s).

%F Sum_{k=1..n} a(k) ~ c * n^5 / 5, where c = zeta(3)/zeta(5) = 1.1592484598... . (End)

%t f[p_, e_] := p^(2*e-2) * (p^2 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, May 21 2024 *)

%o (PARI) a(n) = sumdiv(n, d, moebius(n/d)*d^2*sigma(d, 2));

%Y Cf. A069097, A360428, A368743, A372927.

%Y Cf. A343498, A372929, A372931.

%Y Cf. A001157, A008683.

%Y Cf. A002117, A013663.

%K nonn,mult

%O 1,2

%A _Seiichi Manyama_, May 17 2024