%I #14 Sep 20 2024 06:34:55
%S 1,0,4,32,6144,1152000,45984153600000
%N Number of diagonalized cyclic diagonal Latin squares of order 2n+1 with the first row in order.
%C See Comments in A372922.
%H Eduard I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
%H Eduard I. Vatutin, <a href="https://vk.com/wall162891802_2443">About the different types of cyclic diagonal Latin squares</a> (in Russian).
%H E. Vatutin, A. Belyshev, N. Nikitina, M. Manzuk, A. Albertian, I. Kurochkin, A. Kripachev, and A. Pykhtin, <a href="https://doi.org/10.1007/978-3-031-49435-2_4">Diagonalization and Canonization of Latin Squares</a>, Lecture Notes in Computer Science, Vol. 14389, Springer, Cham., 2023. pp. 48-61.
%H <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%F a(n) = A372922(n) / (2n+1)!. - _Eduard I. Vatutin_, Sep 08 2024
%Y Cf. A071607, A123565, A338522, A372922, A375475.
%K nonn,more,hard
%O 0,3
%A _Eduard I. Vatutin_, May 16 2024