login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The n-th iterate of 27 with Reduced Collatz-function R, which gives the odd part of 3n+1.
15

%I #18 May 10 2024 11:16:28

%S 27,41,31,47,71,107,161,121,91,137,103,155,233,175,263,395,593,445,

%T 167,251,377,283,425,319,479,719,1079,1619,2429,911,1367,2051,3077,

%U 577,433,325,61,23,35,53,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N The n-th iterate of 27 with Reduced Collatz-function R, which gives the odd part of 3n+1.

%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>

%F a(0) = 27; for n > 0, a(n) = R(a(n-1)), where R(n) = (3*n+1)/2^A371093(n) = A000265(3*n+1).

%F For n > 0, a(n) = R(A372444(n-1)) = A000265(1+3*A372444(n-1)).

%o (PARI)

%o R(n) = { n = 1+3*n; n>>valuation(n, 2); };

%o A372443(n) = { my(x=27); while(n, x=R(x); n--); (x); };

%Y Cf. A000265, A075677, A371093.

%Y Column 14 of A372283, Row 13 of A256598 (but only up to the first 1).

%Y Row 1 of A372560.

%Y From term 47 to the first 1 same as A088593.

%Y Sequences derived from this one or related to:

%Y A372444,

%Y A372445 column index of a(n) in array A257852,

%Y A372362 the 2-adic valuation of 1 + 3*a(n), equal to row index of a(n) in array A257852,

%Y A372447 binary lengths minus 1,

%Y A372446 a(n) xored with the term of A086893 having the same binary length,

%Y A372453 a(n) minus the term of A086893 having the same binary length.

%K nonn

%O 0,1

%A _Antti Karttunen_, May 01 2024