login
Lowest prime p in a ladder of 5 consecutive primes p, p+2, p+6, p+14, p+30.
2

%I #11 May 19 2024 12:03:29

%S 2237,6827,17387,37307,43397,58907,65837,89597,105527,126227,189347,

%T 190577,212867,218987,569417,570077,649277,673397,678407,704447,

%U 728837,770177,826667,981437,988577,1016567,1198397,1244987,1322327,1455197,1815347,2162057,2166947,2357807,2364287,2422697

%N Lowest prime p in a ladder of 5 consecutive primes p, p+2, p+6, p+14, p+30.

%e 17387, 17389, 17393, 17401 and 17417 are 5 consecutive primes with gaps 2, 4, 8 and 16, so 17387 is in the sequence.

%t First /@ Parallelize[

%t Select[Table[NextPrime[Prime@i, Range@5], {i, 10^6}],

%t Differences@# == {2, 4, 8, 16} &]] (* _Mikk Heidemaa_, Apr 25 2024 *)

%Y Subsequence of A372247. A372085 is a subsequence.

%K nonn

%O 1,1

%A _R. J. Mathar_, Apr 24 2024