login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by ascending antidiagonals: A(n, k) is the number of paths of length k in Z^n from the origin to points such that x1+x2+...+xn = k with x1,...,xn > 0.
2

%I #23 Apr 19 2024 11:31:18

%S 1,0,1,0,2,1,0,0,6,1,0,0,6,14,1,0,0,0,36,30,1,0,0,0,24,150,62,1,0,0,0,

%T 0,240,540,126,1,0,0,0,0,120,1560,1806,254,1,0,0,0,0,1800,8400,5796,

%U 510,1

%N Array read by ascending antidiagonals: A(n, k) is the number of paths of length k in Z^n from the origin to points such that x1+x2+...+xn = k with x1,...,xn > 0.

%C T(n, k) can also be seen as the number of ordered partitions of k items into n nonempty buckets.

%C T(n, n) = n!, which is readily seen because to go from the origin to a point in Z^n a distance n away, with at least one step taken in each dimension, the first step can be in any of n dimensions, the second step in any of n-1 dimensions, and so on.

%C This array is the image of Pascal's triangle A007318 under the Akiyama-Tanigawa transformation. See the Python program. - _Peter Luschny_, Apr 19 2024

%F A(n,k) = Sum_{i=1..n} (-1)^(n-i) * binomial(n,i) * i^k

%e n\k 1 2 3 4 5 6 7 8 9 10

%e --------------------------------------------------

%e 1| 1 1 1 1 1 1 1 1 1 1

%e 2| 0 2 6 14 30 62 126 254 510 1022

%e 3| 0 0 6 36 150 540 1806 5796 18150 55980

%e 4| 0 0 0 24 240 1560 8400 40824 186480 818520

%e 5| 0 0 0 0 120 1800 16800 126000 834120 5103000

%e 6| 0 0 0 0 0 720 15120 191520 1905120 16435440

%e 7| 0 0 0 0 0 0 5040 141120 2328480 29635200

%e 8| 0 0 0 0 0 0 0 40320 1451520 30240000

%e 9| 0 0 0 0 0 0 0 0 362880 16329600

%e 10| 0 0 0 0 0 0 0 0 0 3628800

%t A[n_,k_] := Sum[(-1)^(n-i) * i^k * Binomial[n,i], {i,1,n}]

%o (Python)

%o # The Akiyama-Tanigawa algorithm for the binomial generates the rows.

%o # Adds row(0) = 0^k and column(0) = 0^n.

%o def ATBinomial(n, len):

%o A = [0] * len

%o R = [0] * len

%o for k in range(len):

%o R[k] = binomial(k, n)

%o for j in range(k, 0, -1):

%o R[j - 1] = j * (R[j] - R[j - 1])

%o A[k] = R[0]

%o return A

%o for n in range(11): print([n], ATBinomial(n, 11)) # _Peter Luschny_, Apr 19 2024

%Y Cf. A000918 (n=2), A001117 (n=3), A000919 (n=4), A001118 (n=5), A000920 (n=6).

%Y Cf. A135456 (n=7), A133068 (n=8), A133360 (n=9), A133132 (n=10).

%Y Cf. A371064, A007318.

%Y See A019538 and A131689 for other versions.

%K nonn,tabl

%O 1,5

%A _Shel Kaphan_, Mar 28 2024