login
Squared volumes of tetrahedra with integer edge lengths, multiplied by 144.
5

%I #21 Dec 10 2024 13:13:47

%S 2,11,14,26,34,44,47,54,59,62,74,98

%N Squared volumes of tetrahedra with integer edge lengths, multiplied by 144.

%C The larger terms depend on a lower bound for the minimum volume, which is not yet available. Therefore the data > 100 was removed. See A371072 for progress in determining this lower bound.

%H IBM Research, <a href="https://research.ibm.com/haifa/ponderthis/challenges/November2024.html">Tetrahedron Volumes</a>, Ponder This Challenge November 2024.

%H Hugo Pfoertner, <a href="/A371071/a371071.txt">List of tetrahedra with small volumes</a>, (2024); gives known further terms of the sequence.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cayley%E2%80%93Menger_determinant">Cayley-Menger determinant</a>

%H Karl Wirth and Andre Dreiding, <a href="https://doi.org/10.4171/em/129">Edge lengths determining tetrahedrons</a>, Elemente der Mathematik, 64 (2009), 160-170.

%Y Cf. A097125, A208454, A371070, A371072, A371344.

%K nonn,more

%O 1,1

%A _Hugo Pfoertner_, Mar 18 2024