%I #21 Dec 10 2024 13:13:47
%S 2,11,14,26,34,44,47,54,59,62,74,98
%N Squared volumes of tetrahedra with integer edge lengths, multiplied by 144.
%C The larger terms depend on a lower bound for the minimum volume, which is not yet available. Therefore the data > 100 was removed. See A371072 for progress in determining this lower bound.
%H IBM Research, <a href="https://research.ibm.com/haifa/ponderthis/challenges/November2024.html">Tetrahedron Volumes</a>, Ponder This Challenge November 2024.
%H Hugo Pfoertner, <a href="/A371071/a371071.txt">List of tetrahedra with small volumes</a>, (2024); gives known further terms of the sequence.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cayley%E2%80%93Menger_determinant">Cayley-Menger determinant</a>
%H Karl Wirth and Andre Dreiding, <a href="https://doi.org/10.4171/em/129">Edge lengths determining tetrahedrons</a>, Elemente der Mathematik, 64 (2009), 160-170.
%Y Cf. A097125, A208454, A371070, A371072, A371344.
%K nonn,more
%O 1,1
%A _Hugo Pfoertner_, Mar 18 2024