%I #15 Mar 11 2024 12:57:56
%S 1,0,0,0,1,0,0,4,-4,0,28,-60,44,204,-750,1084,979,-8444,18886,-7568,
%T -82269,280288,-348172,-576712,3677331,-7445964,569558,41740944,
%U -126624684
%N Low temperature series for spin-1/2 Ising partition function on body-centered cubic lattice.
%C The series is in the variable u = exp(-4J/kT).
%C The expansion of the logarithm of the g.f. of this sequence is given in Domb & Guttmann's Table 1 (with a reference to Sykes et al., 1965) and continued in Eq. (4.14) of Sykes et al., 1973.
%D Claude Itzykson and Jean-Michel Drouffe, Statistical field theory, vol. 2, Cambridge University Press, 1989. Eq. (120) is supposed to give the logarithm of the g.f., but its second half is erroneously switched with the second half of Eq. (121). These second halves are Eqs. (4.15) and (4.14) of Sykes et al., 1973.
%H C. Domb and A. J. Guttmann, <a href="https://doi.org/10.1088/0022-3719/3/8/003">Low-temperature series for the Ising model</a>, J. Phys. C: Solid State Phys., 3 (1970), 1652-1660.
%H M. F. Sykes, J. W. Essam and D. S. Gaunt, <a href="https://doi.org/10.1063/1.1704279">Derivation of low-temperature expansions for the Ising model of a ferromagnet and an antiferromagnet</a>, J. Math. Phys. 6 (1965), 283-298.
%H M. F. Sykes, D. S. Gaunt, J. W. Essam and C. J. Elliott, <a href="https://doi.org/10.1088/0305-4470/6/10/009">Derivation of low-temperature expansions for Ising model. VI. Three-dimensional lattices-temperature grouping</a>, J. Phys. A: Math. Nucl. Gen., 6 (1973), 1507-1516.
%H <a href="/index/Ba#bcc">Index entries for sequences related to b.c.c. lattice</a>
%Y Cf. A002891 (simple cubic), A002892 (f.c.c.); A003193 (magnetization), A002925 (ferromagnetic susceptibility), A007218 (antiferromagnetic susceptibility); A001406 (high temperature).
%K sign,more
%O 1,8
%A _Andrey Zabolotskiy_, Mar 11 2024