login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of [n] whose singletons sum to n.
2

%I #17 Mar 08 2024 07:12:25

%S 1,1,0,1,2,6,20,78,307,1486,6974,38584,212268,1321886,8186322,

%T 57015161,391153290,2976480926,22534577137,185638964675,1522358748758,

%U 13558705354828,119620910388056,1137343427864934,10770667246889494,108819371313460263,1095389086585963202

%N Number of partitions of [n] whose singletons sum to n.

%H Alois P. Heinz, <a href="/A370947/b370947.txt">Table of n, a(n) for n = 0..577</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(n) = A370945(n,n).

%e a(0) = 1: the empty partition.

%e a(1) = 1: 1.

%e a(3) = 1: 12|3.

%e a(4) = 2: 123|4, 1|24|3.

%e a(5) = 6: 1234|5, 12|34|5, 13|24|5, 14|23|5, 1|235|4, 145|2|3.

%e a(6) = 20: 12345|6, 123|45|6, 124|35|6, 125|34|6, 12|345|6, 134|25|6, 135|24|6, 13|245|6, 1356|2|4, 13|2|4|56, 145|23|6, 14|235|6, 15|234|6, 1|2346|5, 1|23|46|5, 1|24|36|5, 1|26|34|5, 15|2|36|4, 16|2|35|4, 1|2|3|456.

%p h:= proc(n) option remember; `if`(n=0, 1,

%p add(h(n-j)*binomial(n-1, j-1), j=2..n))

%p end:

%p b:= proc(n, i, m) option remember; `if`(n>i*(i+1)/2, 0,

%p `if`(n=0, h(m), b(n, i-1, m)+b(n-i, min(n-i, i-1), m-1)))

%p end:

%p a:= n-> b(n$3):

%p seq(a(n), n=0..26);

%t h[n_] := h[n] = If[n == 0, 1, Sum[h[n-j]*Binomial[n-1, j-1], {j, 2, n}]];

%t b[n_, i_, m_] := b[n, i, m] = If[n > i*(i + 1)/2, 0, If[n == 0, h[m], b[n, i - 1, m] + b[n - i, Min[n - i, i - 1], m - 1]]];

%t a[n_] := b[n, n, n];

%t Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, Mar 08 2024, after _Alois P. Heinz_ *)

%Y Main diagonal of A370945.

%Y Cf. A000009, A000110, A000296.

%K nonn

%O 0,5

%A _Alois P. Heinz_, Mar 06 2024