Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 12 2024 19:32:52
%S 1,6,39,269,1917,13893,101830,753255,5614504,42110432,317474187,
%T 2403893757,18270065438,139305459960,1065183756535,8165168139498,
%U 62729216570805,482878316552298,3723769699813119,28762830132956421,222495155932381229,1723432870654770161,13366099075223254740
%N Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
%C A related function is theta_4(x) = 1 + 2*Sum_{n>=1} (-1)^n * x^(n^2).
%H Paul D. Hanna, <a href="/A370026/b370026.txt">Table of n, a(n) for n = 1..401</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
%F (1) Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
%F (2) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 6*A(x))^(n-1) = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
%F (3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n + 6*A(x))^n = 0.
%F (4) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 6*A(x)*x^n)^n = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
%F (5) Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 6*A(x)*x^n)^(n+1) = 1 + 8*Sum_{n>=1} (-1)^n * x^(n^2).
%F (6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)) / (1 + 6*A(x)*x^n)^(n+1) = 0.
%e G.f.: A(x) = x + 6*x^2 + 39*x^3 + 269*x^4 + 1917*x^5 + 13893*x^6 + 101830*x^7 + 753255*x^8 + 5614504*x^9 + 42110432*x^10 + 317474187*x^11 + ...
%e where
%e Sum_{n=-oo..+oo} (-1)^n * (x^n + 6*A(x))^n = 1 - 8*x + 8*x^4 - 8*x^9 + 8*x^16 - 8*x^25 + 8*x^36 - 8*x^49 +- ...
%e SPECIAL VALUES.
%e (V.1) Let A = A(exp(-Pi)) = 0.05892551210473733684254468528377030200762221986684224912...
%e then Sum_{n=-oo..+oo} (-1)^n * (exp(-n*Pi) + 6*A)^n = 4*(Pi/2)^(1/4)/gamma(3/4) - 3 = 0.65431655262446728562897...
%e (V.2) Let A = A(exp(-2*Pi)) = 0.001888624085511713374935799800784148455986111369097248489...
%e then Sum_{n=-oo..+oo} (-1)^n * (exp(-2*n*Pi) + 6*A)^n = 4*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4) - 3 = 0.985060458243628543159...
%e (V.3) Let A = A(-exp(-Pi)) = -0.03443859231795915470687740421610270983167641847531807729...
%e then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-n*Pi) + 6*A)^n = 4*Pi^(1/4)/gamma(3/4) - 3 = 1.3457392448532320583012...
%e (V.4) Let A = A(-exp(-2*Pi)) = -0.001846769433141026637620872576636896819075507182864480219...
%e then Sum_{n=-oo..+oo} (-1)^n * ((-1)^n*exp(-2*n*Pi) + 6*A)^n = 4*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4) - 3 = 1.01493954195095636419...
%o (PARI) {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
%o A[#A] = polcoeff( sum(m=-#A,#A, (-1)^m * (x^m + 6*Ser(A))^m ) - 1 - 8*sum(m=1,#A, (-1)^m * x^(m^2) ), #A-1)/6 ); A[n+1]}
%o for(n=1,30, print1(a(n),", "))
%Y Cf. A370020, A370021, A370022, A370023, A370024, A370025, A370027, A370028, A370029, A370042.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Feb 09 2024