%I #6 Jan 20 2024 09:47:01
%S 0,2,6,18,34,48,62,108,166,242,334,512,706,984,1368,1876,2492,3360,
%T 4422,5848,7574,9792,12596,16130,20412,25850
%N a(n) = number of pairs (p,q) of partitions of n such that d(p,q) > o(p,q), where d and o are distance functions; see Comments.
%C The definition of d depends on the greedy ordering of the partitions p(i) of n; that is, p(1) >= p(2) >= ... >= p(k), where k = A000041(n); see A366156. The ordinal distance o is defined by o(p(i),p(j)) = |i-j|.
%F A368564(n) + A368565(n) + a(n) = A001255(n) for n >= 1.
%e The 5 partitions of 4 are (p(1),p(2),p(3),p(4),p(5)) = (4,21,22,211,1111). The following table shows the 25 pairs d(p(i),q(j)) and o(p(i),q(j)):
%e | 4 31 22 211 1111
%e ------------------------------------------------
%e 4 d | 0 2 4 4 6
%e o | 0 1 2 3 4
%e 31 d | 2 0 2 2 4
%e o | 1 0 1 2 3
%e 22 d | 4 2 0 2 4
%e o | 2 1 0 1 2
%e 211 d | 4 2 2 0 2
%e o | 3 2 1 0 1
%e 1111 d | 6 4 4 2 0
%e o | 4 3 2 1 0
%e The table shows 18 pairs (p,q) for which d(p,q) > o(p,q), so a(4) = 18.
%t c[n_] := PartitionsP[n];
%t q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]];
%t r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]];
%t d[u_, v_] := Total[Abs[u - v]];
%t p[n_] := Flatten[Table[d[r[n, j], r[n, k]] - Abs[j - k], {j, 1, c[n]}, {k, 1, c[n]}]];
%t Table[Count[p[n], 0], {n, 1, 16}] (* A368565 *)
%t Table[Length[Select[p[n], Sign[#] == -1 &]], {n, 1,16}] (* A368566 *)
%t Table[Length[Select[p[n], Sign[#] == 1 &]], {n, 1, 16}] (* A368567 *)
%Y Cf. A000041, A001255, A366156, A368564, A368565.
%K nonn,more
%O 1,2
%A _Clark Kimberling_, Dec 31 2023