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Let a(n) denote the terms of OEIS A368548, the number of palindromic partitions of n.

Theorem 1. a(n) = x+ y where

x =

{
0 , n even∑

d|n+1
2

(d−2+n+1
2d

d−1

)
, n odd

and y = 2
∑

d|n+1,d≥3,d is odd

( d−5
2 +n+1

d
d−3
2

)
.

Proof. From the generating function in Hemmer and Westrem [1] (Theorem 3.1) to find a(n) we need to solve
the equations 2kl+2k+2l+1 = n and 2kl+2k+3l+2 = n. The first equation reduces to 2(k+1)(l+1) = n+1
which has no solutions if n is even. If n is odd, (k + 1)(l + 1) = n+1

2 and we set k + 1 = d, l + 1 = n+1
2d for

each divisor d of n+1
2 and

(
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)
=
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2d
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)
. This leads to the term x. The second equation reduces to

(2k+3)(l+1) = n+1. Note that 2k+3 is odd and we set 2k+3 to be an odd divisor d ≥ 3 of n+1. Then

l + 1 = n+1
d and 2
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)
= 2
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)
.

Corollary 1. If n > 1 and n+ 1 is prime, then a(n) = 2.

Proof. Since n > 1, n+1 = p being prime implies n is even, i.e., x = 0 in the Theorem above. The only odd

divisor ≥ 3 of n+ 1 is p and y = 2
( p−5

2 +1
p−3
2

)
= 2

( p−3
2

p−3
2

)
= 2, i.e., a(n) = 2.

Corollary 1 also follows from Theorem 3.3 in Hemmer and Westrem [1].

Corollary 2. If n > 3 is odd and n+1
2 is prime, then a(n) = n+3

2 .

Proof. Since n > 3, this means that n+1
2 = p is an odd prime. For x, the only divisors of n+1

2 are 1 and p

and x = 2
(
p−2+1
p−1

)
= 2. Similarly, the only odd divisor ≥ 3 of n+ 1 is p and y = 2

( p−5
2 +2
p−3
2

)
= 2

( p−1
2
1

)
= p− 1.

Thus a(n) = x+ y = p+ 1 = n+3
2 .

Corollary 3. a(2n − 1) =
∑n−1

i=0

(
2i+2n−i−1−2

2i−1

)
.

Proof. Since 2n is either even or < 3, this implies that y = 0. The result then follows since the divisors of
2n−1 are 2i, for i = 0, 1, · · · , n− 1.

A similar derivation shows that R(n) (OEIS A375783) in Table 5.1 in Hemmer and Westrem [1] has a
similar formula.
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Theorem 2. Let T (n, k) be the table in OEIS A183917. Then R(n) = x+ y where

x =

{
0 , n even∑

d|n+1
2

T (n+1
d − 2, d− 1) , n odd

and y = 2
∑

d|n+1,d≥3,d is odd T (d− 2, n+1
d − 1).

Corollary 4. If n > 1 and n+ 1 is prime, then R(n) = a(n) = 2.

Proof. The same argument as Corollary 1 shows that R(n) = y = 2T (p− 2, 1) = 2.

Corollary 5. If n > 3 is odd and n+1
2 is prime, then R(n) = a(n) = n+3

2 .

Proof. x = T (n−1, 0)+T (0, p−1) = 1+1 = 2. y = 2T (p−2, 1) = 2p−1
2 = p−1. Thus R(n) = p+1 = n+3

2 .

Corollary 6. R(2n − 1) =
∑n−1

i=0 T (2n−i − 2, 2i − 1).
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