For PIE we need to choose the required poset which consists of nodes Q_S where S is a set of disjoint m -cycles chosen from the m -cycles that can be formed using the elements of $[n].$ We build rows for fixed cardinality of $|S|.$ We consider the poset spanned by the nodes on row k and the top row, i.e. the row where $|S| = \lfloor n/m \rfloor.$ The weight attached to the node Q_S is $(-1)^{|S|-k}{|S|\choose k}$ and the poset is ordered by subset inclusion of S . The permutations that are represented at each node consist of the $|S|$ cycles of length m with the rest being arranged at liberty. The cardinality of the permutations represented at a node Q_S is thus $(n - m|S|)!$. We now count the permutations represented by the nodes of the subposet according to their weight. Do this in two ways: the intersection with row p contains

$$
\binom{n}{m,m,\ldots,m,n-pm}\frac{1}{p!}(m-1)!^p=\frac{n!}{m^pp!}\frac{1}{(n-pm)!}.
$$

nodes. The weight on these is $(-1)^{p-k} \binom{p}{k}$ and the cardinality of the set of permutations being represented is $(n-pm)!$ for a total of

$$
\sum_{p=k}^{\lfloor n/m\rfloor}(-1)^{p-k}{p\choose k}\frac{n!}{m^pp!} \\ =n!\sum_{p=0}^{\lfloor n/m\rfloor-k}(-1)^p{p+k\choose k}\frac{1}{m^{p+k}(p+k)!} \\ =\frac{n!}{m^kk!}\sum_{p=0}^{\lfloor n/m\rfloor-k}\frac{(-1)^p}{m^pp!}.
$$

Good, this is our claim. Now to count in the second way, what is the total weight on a permutation with precisely a set P of m -cycles where $k \leq |P| \leq \lfloor n/m \rfloor.$ It is represented at all Q_S where $S \subseteq P$ and $|S| \geq k$ giving the sum

$$
\sum_{S\subseteq P, |S|\geq k}(-1)^{|S|-k}\binom{|S|}{k}=\sum_{p=k}^{|P|}\binom{|P|}{p}(-1)^{p-k}\binom{p}{k}.
$$

Now a permutation with $|P| = k$ i.e. exactly $k \, m$ -cycles therefore contributes with weight one, as desired. For $|P|>k$ we find

$$
\sum_{p=k}^{|P|}(-1)^{p-k}\frac{|P|!}{(|P|-p)!\times k!\times (p-k)!}\\\hspace*{1cm}=\binom{|P|}{k}\sum_{p=k}^{|P|}(-1)^{p-k}\binom{|P|-k}{p-k}\\\hspace*{1cm}=\binom{|P|}{k}\sum_{p=0}^{|P|-k}(-1)^{p}\binom{|P|-k}{p}=\binom{|P|}{k}(1-1)^{|P|-k}=0.
$$

We see that permutations with more than k m -cycles contribute with weight zero, which concludes the PIE argument.