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For PIE we need to choose the required poset which consists of nodes () g where .S is a set of disjoint 1-cycles
chosen from the m-cycles that can be formed using the elements of [n] We build rows for fixed cardinality of
|S|. We consider the poset spanned by the nodes on row k and the top row, i.e. the row where | S| = I_n/mj .

The weight attached to the node () g is (—1)‘S|_k (‘i') and the poset is ordered by subset inclusion of S. The
permutations that are represented at each node consist of the ]S’| cycles of length m with the rest being
arranged at liberty. The cardinality of the permutations represented at a node QS is thus (n — m|S|)!. We

now count the permutations represented by the nodes of the subposet according to their weight. Do this in two
ways: the intersection with row p contains
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Good, this is our claim. Now to count in the second way, what is the total weight on a permutation with precisely
a set P of m-cycles where k < |P| < |n/m]. Itis represented at all Qg where S C Pand |S| > k

giving the sum
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Now a permutation with |P| = ki.e. exactly k m-cycles therefore contributes with weight one, as desired. For
|P| > k we find
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We see that permutations with more than k m-cycles contribute with weight zero, which concludes the PIE
argument.
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