login
a(n) is the smallest divisor d of n such that n/d is a cubefull exponentially odd number (A335988).
2

%I #7 Dec 16 2023 09:01:51

%S 1,2,3,4,5,6,7,1,9,10,11,12,13,14,15,2,17,18,19,20,21,22,23,3,25,26,1,

%T 28,29,30,31,1,33,34,35,36,37,38,39,5,41,42,43,44,45,46,47,6,49,50,51,

%U 52,53,2,55,7,57,58,59,60,61,62,63,2,65,66,67,68,69,70

%N a(n) is the smallest divisor d of n such that n/d is a cubefull exponentially odd number (A335988).

%C First differs from A050985 at n = 32, and from A367699 at n = 64.

%H Amiram Eldar, <a href="/A368171/b368171.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = p^e if e <= 2, a(p^e) = 1 if e is odd and e > 1, and p otherwise.

%F a(n) = n/A368170(n).

%F a(n) >= 1, with equality if and only if n is in A335988.

%F a(n) <= n, with equality if and only if n is cubefree (A004709).

%F Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^2/30) * Product_{p prime} (1 + 1/p^2 - 1/p^3 - 1/p^5 + 1/p^6) = 0.42246686366220037592... .

%t f[p_, e_] := If[e <= 2, p^e, If[EvenQ[e], p, 1]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2] <= 2, f[i,1]^f[i,2], if(f[i,2]%2, 1, f[i,1])))};

%Y Cf. A004709, A335988, A368170.

%Y Cf. A050985, A367699.

%K nonn,easy,mult

%O 1,2

%A _Amiram Eldar_, Dec 14 2023