login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

The largest cubefull exponentially odd divisor of n.
3

%I #8 Dec 16 2023 09:01:47

%S 1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,8,1,1,27,1,1,1,1,32,1,

%T 1,1,1,1,1,1,8,1,1,1,1,1,1,1,8,1,1,1,1,1,27,1,8,1,1,1,1,1,1,1,32,1,1,

%U 1,1,1,1,1,8,1,1,1,1,1,1,1,8,27,1,1,1,1,1

%N The largest cubefull exponentially odd divisor of n.

%C First differs from A008834 at n = 32, and from A366906 at n = 64.

%H Amiram Eldar, <a href="/A368170/b368170.txt">Table of n, a(n) for n = 1..10000</a>

%F Multiplicative with a(p^e) = 1 if e <= 2, a(p^e) = p^e if e is odd and e > 1, and p^(e-1) otherwise.

%F a(n) = n/A368171(n).

%F a(n) >= 1, with equality if and only if n is cubefree (A004709).

%F a(n) <= n, with equality if and only if n is in A335988.

%t f[p_, e_] := If[e <= 2, 1, If[EvenQ[e], p^(e-1), p^e]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

%o (PARI) a(n) = {my(f=factor(n)); prod(i=1, #f~, if(f[i,2] <= 2, 1, if(!(f[i,2]%2), f[i,1]^(f[i, 2]-1), f[i, 1]^f[i, 2])))};

%Y Cf. A004709, A335988, A350390, A356192, A368167, A368171.

%Y Cf. A008834, A366906.

%K nonn,easy,mult

%O 1,8

%A _Amiram Eldar_, Dec 14 2023