Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Nov 28 2023 12:51:01
%S 1,1,5,30,205,1525,12001,98229,827651,7130614,62528631,556247554,
%T 5007588460,45535148222,417625550140,3858724742014,35884576665516,
%U 335616614245440,3154800011439675,29789198944740050,282426795122071741,2687467779597815314,25658105671446219050
%N Expansion of g.f. A(x) satisfying x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^5) such that A(0) = 1.
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
%F (1) x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^5).
%F (2) x = (1+x)*A(x) - A(x)^2 + x*A(x)^5 such that A(0) = 1.
%F (3) A(x) = x / Series_Reversion(x*(1 + Series_Reversion( x/((1 + x)^5 + x) ))).
%F (4) a(n) = Sum_{k=1..n} binomial(n, k) * binomial(5*k-n, k-1))/n for n > 0 with a(0) = 1 (derived from a formula by _Tani Akinari_ in A243156).
%e G.f. A(x) = 1 + x + 5*x^2 + 30*x^3 + 205*x^4 + 1525*x^5 + 12001*x^6 + 98229*x^7 + 827651*x^8 + 7130614*x^9 + 62528631*x^10 + ...
%e Let R(x) = x * (1 - x) / (1 - x - x^5) then R(A(x)) = x;
%e however, A(R(x)) does not equal x, rather
%e A(R(x)) = 1 + x + 5*x^2 + 30*x^3 + 205*x^4 + 1525*x^5 + 12002*x^6 + 98240*x^7 + 827752*x^8 + 7131535*x^9 + 62537177*x^10 + ...
%o (PARI) {a(n)=polcoeff(x/serreverse(x*(1+serreverse(x/((1 + x)^5 + x +x*O(x^n))))), n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) /* From a formula by Tani Akinari in A243156 */
%o {a(n) = 0^n + sum(k=1, n, binomial(n, k)*binomial(5*k-n, k-1))/(n+0^n)}
%o for(n=0,30,print1(a(n),", "))
%Y Cf. A243156, A367724.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 28 2023