login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367725
Expansion of g.f. A(x) satisfying x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^5) such that A(0) = 1.
4
1, 1, 5, 30, 205, 1525, 12001, 98229, 827651, 7130614, 62528631, 556247554, 5007588460, 45535148222, 417625550140, 3858724742014, 35884576665516, 335616614245440, 3154800011439675, 29789198944740050, 282426795122071741, 2687467779597815314, 25658105671446219050
OFFSET
0,3
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) x = A(x) * (1 - A(x)) / (1 - A(x) - A(x)^5).
(2) x = (1+x)*A(x) - A(x)^2 + x*A(x)^5 such that A(0) = 1.
(3) A(x) = x / Series_Reversion(x*(1 + Series_Reversion( x/((1 + x)^5 + x) ))).
(4) a(n) = Sum_{k=1..n} binomial(n, k) * binomial(5*k-n, k-1))/n for n > 0 with a(0) = 1 (derived from a formula by Tani Akinari in A243156).
EXAMPLE
G.f. A(x) = 1 + x + 5*x^2 + 30*x^3 + 205*x^4 + 1525*x^5 + 12001*x^6 + 98229*x^7 + 827651*x^8 + 7130614*x^9 + 62528631*x^10 + ...
Let R(x) = x * (1 - x) / (1 - x - x^5) then R(A(x)) = x;
however, A(R(x)) does not equal x, rather
A(R(x)) = 1 + x + 5*x^2 + 30*x^3 + 205*x^4 + 1525*x^5 + 12002*x^6 + 98240*x^7 + 827752*x^8 + 7131535*x^9 + 62537177*x^10 + ...
PROG
(PARI) {a(n)=polcoeff(x/serreverse(x*(1+serreverse(x/((1 + x)^5 + x +x*O(x^n))))), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* From a formula by Tani Akinari in A243156 */
{a(n) = 0^n + sum(k=1, n, binomial(n, k)*binomial(5*k-n, k-1))/(n+0^n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A091927 A253076 A165312 * A082301 A144180 A222050
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 28 2023
STATUS
approved