%I #9 Nov 18 2023 08:36:19
%S 1,1,7,82,1342,28204,724276,21988000,770703496,30639393640,
%T 1362480890104,67018512565168,3613262889736144,211897666186184224,
%U 13429569671442331936,914731985485067825152,66638964749234715026560,5170503246184584686976640
%N Expansion of e.g.f. 1 / (1 + log(1 - 3*x))^(1/3).
%F a(n) = Sum_{k=0..n} 3^(n-k) * (Product_{j=0..k-1} (3*j+1)) * |Stirling1(n,k)|.
%F a(0) = 1; a(n) = Sum_{k=1..n} 3^k * (1 - 2/3 * k/n) * (k-1)! * binomial(n,k) * a(n-k).
%o (PARI) a(n) = sum(k=0, n, 3^(n-k)*prod(j=0, k-1, 3*j+1)*abs(stirling(n, k, 1)));
%Y Cf. A352070, A352118.
%K nonn
%O 0,3
%A _Seiichi Manyama_, Nov 18 2023