
Polyiamond tiling – Version 2       April 2024 

Consider the sequence a(n) = the maximum number of distinct tilings of a polyiamond of size n using 

any combination of polyiamond tiles of sizes 1 through n. 

DATA: 1, 2, 4, 8, 16, 58, 116, 232, 464, 1690, 3380, 6760, 24712, 49424, 98848, 361258, … (see 

published sequence) 

The sequence considers reflections and rotations as distinct tilings. The polyiamonds being tiled and 

the tiles themselves may be with or without holes. 

The following diagram shows the 8 distinct tilings of each of the 3 tetriamonds. For example, in the 

first line we see tilings made of (i) the tetriamond itself, (ii) one triamond + one moniamond, and (iii) 

one moniamond + one triamond. 



 



The following table shows, for polyiamond sizes up to 17, what numbers of distinct tiling patterns are possible. E.g., for size 6, 11 free polyiamonds have 32 

distinct patterns, and 1 has 58 distinct patterns. The trailing numbers are the values of the current sequence. 

Underneath each pair of numbers are the values of perimeter, internal points1 count, internal edges count and totally internal edge count. 

1 1  
(1) 

3:0:0:0 

             

2 2 
 (1) 

4:0:1:0 

             

3 4  
(1) 

5:0:2:0 

             

4 8  
(3) 

6:0:3:0 

             

5 16 
 (4) 

7:0:4:0 

             

6 32 
 (11) 

8:0:5:0 

58  
(1) 

6:1:6:0 

            

7 64 
 (23) 

9:0:6:0 

116  
(1) 

7:1:7:0 

            

8 128  
(62) 

10:0:7:0 

232  
(4) 

8:1:8:0 

            

9 256 
 (149) 

11:0:8:0 

464  
(11) 

9:1:9:0 

            

10 512 
 (409) 

12:0:9:0 

928  
(38) 

10:1:10:0 

1690 
 (1) 

8:2:11:1 

           

11 1024 
 (1066) 

13:0:10:0 

1856 
 (118) 

11:1:11:0 

3380 
 (2) 

9:2:12:1 

           

12 2048 
 (2931) 

14:0:11:0 

3712 
 (387) 

12:1:12:0 

4084 
 (1) 

12:0:12:0 

6728 
 (1) 

10:2:13:0 

6760 
 (14) 

10:2:13:1 

         

 
1 See definitions in appendix 



13 4096 
 (7981) 

15:0:12:0 

7424 
 (1197) 

13:1:13:0 

8168 
 (2) 

13:0:13:0 

13456 
 (4) 

11:2:14:0 

13520 
 (50) 

11:2:14:1 

24712 
 (1) 

9:3:15:3 

        

14 8192 
 (22166) 

16:0:13:0  

 14848 
 (3751) 

14:1:14:0  

 16336 
 (11) 

14:0:14:0  

 16370 
 (1) 

14:0:14:0  

 26912  
(24) 

12:2:15:0  

 27040 
 (209) 

12:2:15:1  

 49234 
 (2) 10:3:16:2  

 49424 
 (2) 

10:3:16:3 

      

15 16384 
 (61508) 

17:0:14:0  

 29696 
(11563) 

15:1:15:0  

 32672 
 (47) 

15:0:15:0  

 32740 
 (3) 

15:0:15:0  

 53824 
(110) 

13:2:16:0  

 54080 
 (732) 

13:2:16:1  

 59228 
 (1) 13:1:16:0  

 98468 
 (8) 

11:3:17:2  

 98848 
(11) 

11:3:17:3 

     

16 32768 
(172267) 
18:0:15:0  

 59392 
(35636) 

16:1:16:0  

 65344 
(189) 

16:0:16:0  

 65480 
(20) 

16:0:16:0  

 65520  
(1) 

16:0:16:0  

 107648 
(508) 

14:2:17:0  

 108160 
(2566) 

14:2:17:1  

 118456 
(7) 

14:1:17:0  

 196040 
(2) 

12:3:18:1  

 196936 
(53) 

12:3:18:2  

 197696 
(47) 

12:3:18:3  

 361258 
(1) 

10:4:19:5 

  

17 65536 
(483088) 
19:0:16:0  

 118784 
(109142) 
17:1:17:0  

 130688 
(706) 

17:0:17:0  

 130960 
(86) 

17:0:17:0  

 131040  
(7) 

17:0:17:0  

 215296 
(2106) 

15:2:18:0  

 216320 
(8467) 

15:2:18:1  

 236912 
(46) 

15:1:18:0  

 237378 
(1) 

15:1:18:0  

 392080 
(25) 

13:3:19:1  

 393872 
(240) 

13:3:19:2  

 395392 
(189) 

13:3:19:3  

 719824 
(1) 

11:4:20:4  

 722516 
(3) 

11:4:20:5 

 



There are various patterns apparent in the table: 

a) The first data column has values equal to 2^(n-1). 

b) If the value x is in line n, then 2*x appears in line n+1. 

c) a(n+1) is often but not always 2*a(n). In particular, consider the sequence A067628 (minimal 

perimeter for a polyiamond of size n); a(n+1) is close to 3.65 a(n) each time A067628(n+1) < 

A067628(n), and is equal to 2a(n) otherwise. 

d) For any given size of polyiamond, a smaller perimeter implies a larger number of tilings; for any 

given pair of values of size and perimeter, a smaller number of internal completely surrounded points 

implies a larger number of tilings. 

e) For any given size of polyiamond, it is remarkable how few different numbers of tilings are 

generated. For example, 3334 size 12 polyiamonds have just 5 different numbers of tilings. 

Of these, (a) and (b) depend directly on the following Theorems 1 to 4. 

Definition: MTP : maximally tilable polyiamond 

Definition: B(P) is the number of cells that form part of branches of a polyiamond 

Definition: the core of a non-treelike polyiamond is what remains after the removal of branches 

Theorem 1: If T(P) is the number of tiling patterns for some polyiamond P, and Q is a new 

polyiamond formed by adding one triangle to P such that the said triangle touches only one other, 

then T(Q) = 2*T(P). No polyiamond exists for which the addition of a triangle that touches only one 

other is impossible. 

Theorem 2: As a consequence of (1), T(P) = 2^(n-1) for any treelike2 polyiamond of size n (the first 

column of the above table). 

Theorem 3: For any non-treelike polyiamond P of size n, T(P) > 2^(n-1). 

Theorem 4: For any given size, n, of polyiamond, and value t, that is the number of tilings of some 

polyiamond of size n, then for any integer k >= 1 there exist polyiamonds of size n+k that have 2kt 

tilings. 

  

 
2 See definition in appendix 



Note also: 

Theorem 5: If T(P) is the number of tiling patterns for some polyiamond P, and Q is a new 

polyiamond formed by adding one triangle to P such that said triangle touches precisely two others, 

then: 

3*T(P) < T(Q) < 4*T(P) 

Proof: 

Consider the addition of a triangle that touches both triangles a and b of the existing polyiamond: 

 

We want to determine the number of tilings when the triangle is added. Say Ta is some tile that 
contains triangle a, and Tb is some tile that contains triangle b.  
In principle there are 4 cases:  
1) The added triangle itself is considered as a new, standalone tile.  
2) The added triangle builds a new tile together with tile Ta.  
3) The added triangle builds a new tile together with tile Tb.  
4) The added triangle builds a new tile together with the tiles Ta and Tb.  

Define also, with respect to the original polyiamond P: 

NA is the number of tilings where a and b belong to the same tile. 

 
NB is the number of tilings where a and b belong to different tiles, but these two tiles have a 
common edge.  

 
NC is the number of all remaining tilings. 

 

So if T(P) is the number of tilings of P, then T(P) = NA + NB + NC 

In each case, how may new tilings result from the addition of the triangle? 

A: for each of the NA tilings, cases 1 & 4 apply, so there are 2NA new tilings in Q. 



B: for each of the NB tilings, cases 1, 2 & 3 apply so there are 3NB new tilings in Q. 

C: for each of the NC  tilings, all cases apply so there are 4NC  new tilings in Q. 

Therefore (Formula 1), the total number of new tilings is: T(Q) = 2NA + 3NB + 4NC  

 

The minimal n for P is 5. Otherwise, the added triangle could touch two existing triangles. 
NA > 0, as certainly the tiling that consists just of the tile P counts towards NA. 
Case B can be constructed by splitting a tile that contains both triangles into two tiles, where 
one is connected with triangle a and the other with triangle b. There are at least 4 
possibilities to do this. Therefore NB >= 4NA. 
In each tiling of case B a tile that contains triangle a or b consists of at least 3 triangles and 
can be split into 2 or 3 tiles. Thus NC > NB.  
Summary: 0 < NA < NB < NC   
3*T(P) = 3 NA + 3 NB + 3 NC < 3 NA + 3 NB + 3 NC + (NC - NA) = 2 NA + 3 NB + 4 NC = T(Q)  
Therefore 3*T(P) < T(Q) 
4*T(P) = 4 NA + 4 NB + 4 NC > 4 NA + 4 NB + 4 NC - (2 NA + NB) = 2 NA + 3 NB + 4 NC = T(Q)  
Therefore 4*T(P) > T(Q)  
 
Corollary to Theorem 5: If P is an “almost-ring” snake3 of size n and Q is a ring formed by adding one 
triangle to P, then T(Q) / T(P) is less than 4 but arbitrarily close to 4. 
 
Proof: 
Recall that T(P) = 2n-1. 
With respect to P, it is easy to see that: 

NA = 1 
NB = n – 1 
NC = 2n-1 – n 

By Formula 1: 
T(Q) = 2NA + 3NB + 4NC = 2 + 3n – 3 + 4(2n-1 – n) = 4.2n-1 - n – 1 

Therefore: 
T(Q) / T(P) = 4 – (n + 1)/2n-1 which tends to 4 as n tends to infinity. 

 
From the point of view of a ring Q of size r, T(Q) = 2r – r. Take for example the hexagonal polyiamond 
of size 6, which has 26 – 6 = 58 tilings. See A000325. 
 

 

Theorem 6: An MTP of size >= 6 has a maximum of 2 branch cells; any MTP of size >= 6 is non-

treelike 

Theorem 7: The core of an MTP (size >= 6) is an MTP 

Theorem 8: if P is an MTP with B(P) = 2, then the removal of just one tip of a branch will result in an 

MTP 

Theorem 9: for consecutive integers p,q,r (all >= 6), for at least one of p,q,r there must exist a 

polyiamond P of that size that is an MTP and has B(P)=0 

Theorem 10: if a polyiamond R can be formed from the union of 2 polyiamonds P and Q that touch 

at just one edge, then T(R) = 2 * T(P) * T(Q) 

 
3 See definitions in appendix 

https://oeis.org/A000325


 

Theorem 11: Consider a polyiamond R that can be formed from the union of 2 polyiamonds P and Q 

that touch at just two edges of distinct cells. Define the following values (similar to those used in 

Theorem 5): 

• PA is the number of tilings of P such that the two triangles that border with Q are part of the 

same tile 

• PB is the number of tilings of P such that the two triangles that border with Q belong to 

distinct adjacent tiles 

• PC is the number of tilings of P such that the two triangles that border with Q belong to 

distinct non-adjacent tiles 

• QA, QB and QC are as PA, PB and PC respectively. 

Then T(R) = 2PAQA + 3PBQA + 4PCQA + 3PAQB + 4PBQB + 4PCQB + 4PAQC + 4PBQC + 4PCQC 

This formula is valid for 2 edges that are both “adjacent” and non-adjacent. 

Adjacent: 

 

Non-adjacent: 

 

 

The formula has 32 terms; it can be presumed that a similar formula for polyiamonds touching at 3 

edges would have several hundred terms. 

  



Conjectures  
 
It is also possible to make some conjectures: 
 
Conjecture 1: For any given size, n, of polyiamond, the value t, that is the number of tilings of some 
polyiamond of size n, defines precisely the perimeter and the number of internal, completely 
surrounded points of all polyiamonds of size n having t tilings. 
In other words, for polyiamonds P and Q of the same size, T(P) is equal to T(Q) implies per(P) = 
per(Q) and int(P) = int(Q). 
It should be noted that the opposite is not true. Two polyiamonds of the same size, perimeter and 
number of internal points may have different numbers of tilings. 
 
Conjecture 2 (stronger, and with even less justification): The value t, that is the number of tilings of 
some polyiamond of size n, defines precisely the size, the perimeter and the number of internal, 
completely surrounded points of all polyiamonds having t tilings. 
In other words, for polyiamonds P and Q of the same size, T(P) is equal to T(Q) implies size(P) = 
size(Q), per(P) = per(Q) and int(P) = int(Q). 
 
Conjecture 3: a polyiamond of maximal tilings will have a minimal perimeter for its size. 
 
Conjecture 4 (based on observation (d) above):  

• For polyiamonds P and Q of the same size, per(Q) < per(P) implies T(Q) > T(P). 

• For polyiamonds P and Q of the same size and of the same perimeter, int(Q) < int(P) implies 
T(Q) > T(P) 

 
Conjecture 5: if for some size n there exists a branchless MTP, then there does not exist any MTP of 
size n with 1 or more branches. 
 

  



Conjectured maximally tilable polyiamonds. 
 
The following diagram shows those polyiamonds, of various sizes, that have, at the same 
time minimal perimeter and the maximum number of tilings. Therefore, by applying 
Conjecture 3 it is possible to extend the table of probable values through to size 54. 
The conjecture has been proved correct through to size 22. 
For any size i, < 54 but not present in the table, find the highest j < i for which T(j) is known, 
and then calculate: 

T(i) = T(j) * 2(j-i) 

 

 
 
In each case, n gives the size, p the perimeter (minimal), and the number below is the 
conjectured value of T(n). As already stated, the value is proved for n <= 22. 
  

           

 

           

  

            

    

            

     

             

      

             

       

             

        

             

         

             

          

             

            

             

            

             

              

             

              

             

                

             

                 

             

                  

             

                   

             

                    

             

                     

             

                     



Conjectured values (proved from size 1 through 22) 
 

n T(n) 

1 1 

2 2 

3 4 

4 8 

5 16 

6 58 

7 116 

8 232 

9 464 

10 1690 

11 3380 

12 6760 

13 24712 

14 49424 

15 98848 

16 361258 

17 722516 

18 1445032 

19 5280576 

20 10561152 

21 21122304 

22 77188216 

23 154376432 

24 566020564 

25 1132041128 

26 2264082256 

27 8272923384 

28 16545846768 

29 33091693536 

30 120916938960 

31 241833877920 

32 886709903910 

33 1773419807820 

34 3546839615640 

35 12960125369432 

36 25920250738864 

37 95031145140334 

38 190062290280668 

39 380124580561336 

40 1389096170146172 

41 2778192340292344 

42 10184730336553324 

43 20369460673106648 

44 40738921346213296 

45 148860131155497444 

46 297720262310994888 

47 1091526136803955474 

48 2183052273607910948 

49 4366104547215821896 

50 15953756893489615044 

51 31907513786979230088 

52 116982198177788364850 

53 233964396355576729700 

54 857698447225664717150 

  



Free tilings 

This section discusses the number of tilings a polyiamond may have if reflections and rotations count 

just once. 

The above table has this data for the free case: 

1 1(1) 
3:0 

          

2 2(1) 
4:0 

          

3 3(1) 
5:0 

          

4 4(1) 
6:0 

6(2) 
6:0 

         

5 10(2) 
7:0 

16(2) 
7:0 

         

6 12(1) 
6:1 

14(1) 
8:0 

20(5) 
8:0 

32(5) 
8:0 

       

7 24(1) 
9:0 

36(4) 
9:0 

64(18) 
9:0 

66(1) 
7:1 

       

8 72(16) 
10:0 

77(1) 
8:1 

124(1) 
8:1 

128(46) 
10:0 

130(1) 
8:1 

232(1) 
8:1 

     

9 96(1) 
9:1 

136(10) 
11:0 

248(2) 
9:1 

256(139) 
11:0 

464(8) 
9:1 

      

10 104(1) 
12:0 

152(1) 
12:0 

176(2) 
12:0 

262(1) 
10:1 

272(37) 
12:0 

476(1) 
8:2 

480(3) 
10:1 

492(3) 
10:1 

496(2) 
10:1 

512(368) 
12:0 

928(29) 
10:1 

11 528(27) 
13:0 

960(9) 
11:1 

1024(1039) 
13:0 

1856(109) 
11:1 

3380(2) 
9:2 

      

 

  



Free tilings look like this: 

 

 

 

  



Appendix 

Some definitions. 

Treelike. A polyiamond is said to be treelike if there is only one path that connects one triangle to 

another. This diagram shows all the paths of a small treelike polyiamonds: 

 

A treelike polyiamond has a maximal perimeter for its size. In some cases, this specific characteristic 

is used as the definition treelike. 

Another definition is that no subset of its cells forms a ring (see definition). 

Non-treelike. The opposite of treelike is therefore that there exists at least one pair of triangles in 

the polyiamond such that there are at least two paths connecting them. In the diagram, it is clear 

that in this case there are two paths that connect any pair of triangles. 

 

 

A non-treelike polyiamond has a perimeter that is less than maximal for its size. 

Snake. A polyiamond is a snake if it is treelike and no triangle is adjacent to more than 2 triangles. 

 

Ring. A polyiamond is a ring if each triangle is adjacent to precisely 2 other triangles. 

 

  



“Almost-ring” snake: A snake that needs just one more cell to become a ring: 

 

Completely surrounded internal point: A vertex of a triangle of a polyiamond completely 

surrounded by 6 triangles. In this diagram, we have a polyiamond of size (area) 10, perimeter length 

8, and 2 internal points. 

 

Inner edge: an edge of a triangle that is common to 2 adjacent triangles. In the above diagram there 

are 8 inner edges. 

Totally inner edge: an edge of a triangle that is common to 2 adjacent triangles and does not touch 

any empty space. In the above diagram there is 1 totally inner edge. 

 

  



Matrix showing how many polyiamonds of each size n have each possible value of size p for the 

perimeter: 

Size Perimeter 

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 1                  

2  1                 

3   1                

4    3               

5     4              

6    1  11             

7     1  23            

8      4  62           

9       11  149          

10      1  38  409         

11       2  118  1066        

12        15  388  2931       

13       1  54  1199  7981      

14        4  233  3763  22166     

15         19  843  11613  61508    

16        1  102  3081  35846  172267   

17         4  454  10620  109941  483088  
18          36  1944  36313  336560  1361475 

19         1  190  7669      

20          9  1016  29122     

21           68  4630      

22          3  447  19934     

23           19  2435      

24          1  172  12006     

25           4  1120      

26            54  6499     

27           1  447      

28            16  3126     

29             158      

30            4  1367     

31             47      

32            1  530     

33             13      

34              186     

35             2      

36              56     

37             1      

38              16     

39                   

40              4     

41                   

42              1     

Totals 1 1 1 4 5 16 37 120 345 1181 3844 13429 46736 167172     

  



Craig Knecht, John Mason & Walter Trump – April 2024 


