login
E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)).
6

%I #10 Nov 07 2023 08:24:03

%S 1,1,7,95,1954,54244,1901560,80648658,4016874920,229881369768,

%T 14866341101064,1072223706468672,85337672738960736,

%U 7429736462231570304,702426961910810154624,71667022709644235679120,7848761844632669045606016,918383128248130459272478080

%N E.g.f. satisfies A(x) = 1 - A(x)^2 * log(1 - x*A(x)).

%F a(n) = Sum_{k=0..n} (n+2*k)!/(n+k+1)! * |Stirling1(n,k)|.

%o (PARI) a(n) = sum(k=0, n, (n+2*k)!/(n+k+1)!*abs(stirling(n, k, 1)));

%Y Cf. A052802, A138013, A367160.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Nov 07 2023