login
Irregular triangle read by rows: T(n,k) (0 <= n, 0 <= k < 2^n). T(n,k) = -Sum_{i=0..k} A365968(n,i).
2

%I #39 Oct 18 2024 14:53:15

%S 0,1,0,3,4,3,0,6,10,12,12,12,10,6,0,10,18,24,28,32,34,34,32,34,34,32,

%T 28,24,18,10,0,15,28,39,48,57,64,69,72,79,84,87,88,89,88,85,80,85,88,

%U 89,88,87,84,79,72,69,64,57,48,39,28,15,0,21,40,57,72,87

%N Irregular triangle read by rows: T(n,k) (0 <= n, 0 <= k < 2^n). T(n,k) = -Sum_{i=0..k} A365968(n,i).

%H John Tyler Rascoe, <a href="/A367076/b367076.txt">Rows n = 0..12, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Blancmange_curve">Blancmange curve</a>.

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F T(n,k) = Sum_{i=0..n} abs(k + 1 - (2^i) * round((k+1)/2^i)) * i.

%F G.f. for n-th row: 1/(1-x) * Sum_{i=1..n} (i/(1+x^2^(i-1)) * Product_{j=0..i-2} 1 + x^2^j).

%e Triangle begins:

%e k=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

%e n=0: 0;

%e n=1: 1, 0;

%e n=2: 3, 4, 3, 0;

%e n=3: 6, 10, 12, 12, 12, 10, 6, 0;

%e n=4; 10, 18, 24, 28, 32, 34, 34, 32, 34, 34, 32, 28, 24, 18, 10, 0;

%t nmax=10; row[n_]:=Join[CoefficientList[Series[1/(1-x)*Sum[ i/(1+x^2^(i-1))*Product[1+x^2^j,{j,0,i-2}],{i,n}],{x,0,2^n-1}],x],{0}]; Array[row,6,0] (* _Stefano Spezia_, Dec 23 2023 *)

%o (Python)

%o def row_gen(n):

%o x = 0

%o for k in range(2**n):

%o b = bin(k)[2:].zfill(n)

%o x += sum((-1)**(int(b[n-i])+1)*i for i in range(1,n+1))

%o yield(-x)

%o def A367076_row_n(n): return(list(row_gen(n)))

%Y Cf. A000217 (column k=0), A028552 (column k=1), A192021 (row sums).

%Y Cf. A004074, A249071, A274575, A277914, A296062, A365968.

%K nonn,easy,look,tabf

%O 0,4

%A _John Tyler Rascoe_, Nov 05 2023