login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x,y) satisfying 0 = Sum_{n=-oo..+oo} x^n * A(x,y)^n * (y - x^(n-1))^(n+1), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.
7

%I #7 Oct 29 2023 22:02:10

%S 1,0,1,0,-2,2,0,3,-6,5,0,-6,14,-20,14,0,11,-36,59,-70,42,0,-18,87,

%T -176,246,-252,132,0,28,-190,500,-824,1022,-924,429,0,-44,386,-1312,

%U 2615,-3780,4236,-3432,1430,0,69,-756,3218,-7734,13107,-17112,17523,-12870,4862,0,-104,1443,-7514,21496,-42444,64031,-76692,72358,-48620,16796

%N Expansion of g.f. A(x,y) satisfying 0 = Sum_{n=-oo..+oo} x^n * A(x,y)^n * (y - x^(n-1))^(n+1), as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.

%H Paul D. Hanna, <a href="/A366730/b366730.txt">Table of n, a(n) for n = 0..1274</a>

%F G.f. A(x,y) = Sum_{n>=0} sum_{k=0..n} T(n,k)*x^n*y^k satisfies the following formulas.

%F (1) 0 = Sum_{n=-oo..+oo} x^n * A(x,y)^n * (y - x^(n-1))^(n+1).

%F (2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( A(x,y)^n * (1 - y*x^(n+1))^(n-1) ).

%e G.f.: A(x,y) = 1 + x*y + x^2*(-2*y + 2*y^2) + x^3*(3*y - 6*y^2 + 5*y^3) + x^4*(-6*y + 14*y^2 - 20*y^3 + 14*y^4) + x^5*(11*y - 36*y^2 + 59*y^3 - 70*y^4 + 42*y^5) + x^6*(-18*y + 87*y^2 - 176*y^3 + 246*y^4 - 252*y^5 + 132*y^6) + x^7*(28*y - 190*y^2 + 500*y^3 - 824*y^4 + 1022*y^5 - 924*y^6 + 429*y^7) + x^8*(-44*y + 386*y^2 - 1312*y^3 + 2615*y^4 - 3780*y^5 + 4236*y^6 - 3432*y^7 + 1430*y^8) + x^9*(69*y - 756*y^2 + 3218*y^3 - 7734*y^4 + 13107*y^5 - 17112*y^6 + 17523*y^7 - 12870*y^8 + 4862*y^9) + ...

%e where A = A(x,y) satisfies

%e 0 = Sum_{n=-oo..+oo} x^n * A^n * (y - x^(n-1))^(n+1);

%e explicitly,

%e 0 = ((-A + 1)/A)/x + y + (A*y^2 - 2*A*y + ((A^3 - 1)/A^2))*x + A^2*y^3*x^2 + (A^3*y^4 - 3*A^2*y^2)*x^3 + (A^4*y^5 + ((3*A^4 - 1)/A^2)*y)*x^4 + (A^5*y^6 - 4*A^3*y^3 + ((-A^5 + 1)/A^3))*x^5 + A^6*y^7*x^6 + (A^7*y^8 - 5*A^4*y^4 + ((6*A^5 - 1)/A^2)*y^2)*x^7 + A^8*y^9*x^8 + (A^9*y^10 - 6*A^5*y^5 + ((-4*A^6 + 2)/A^3)*y)*x^9 + (A^10*y^11 + ((10*A^6 - 1)/A^2)*y^3)*x^10 + ...

%e This triangle of coefficients of x^n*y^k in A(x,y) begins:

%e 1;

%e 0, 1;

%e 0, -2, 2;

%e 0, 3, -6, 5;

%e 0, -6, 14, -20, 14;

%e 0, 11, -36, 59, -70, 42;

%e 0, -18, 87, -176, 246, -252, 132;

%e 0, 28, -190, 500, -824, 1022, -924, 429;

%e 0, -44, 386, -1312, 2615, -3780, 4236, -3432, 1430;

%e 0, 69, -756, 3218, -7734, 13107, -17112, 17523, -12870, 4862;

%e 0, -104, 1443, -7514, 21496, -42444, 64031, -76692, 72358, -48620, 16796;

%e 0, 152, -2668, 16862, -56856, 129425, -223458, 307189, -340912, 298298, -184756, 58786;

%e 0, -222, 4782, -36456, 144159, -375618, 734310, -1143924, 1453221, -1504932, 1227876, -705432, 208012; ...

%e in which the main diagonal equals the Catalan numbers (A000108), and column 1 equals the coefficients in Product_{n>=1} (1 - q^(2*n-1))^2/(1 - q^(2*n))^2 (A274621).

%o (PARI) {T(n,k) = my(A=[1]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff( sum(n=-#A,#A, x^n * Ser(A)^n * (y - x^(n-1))^(n+1) ), #A-2)); polcoeff(A[n+1],k)}

%o for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))

%Y Cf. A274621 (column 1), A000108 (diagonal), A366736 (central terms).

%Y Cf. A366731 (y=1), A366732 (y=2), A366733 (y=3), A366734 (y=4), A366735 (y=-1).

%K sign,tabl

%O 0,5

%A _Paul D. Hanna_, Oct 29 2023