login
A366721
Number of digits left of the radix point of n when written in base Pi using a greedy algorithm representation.
3
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5
OFFSET
0,5
COMMENTS
More than the usual number of terms are shown to distinguish this sequence from A185679.
FORMULA
a(0) = 1; for n >= 1, a(n) = floor(log_Pi(n)) + 1.
EXAMPLE
a(10) = 3 because 10 in base Pi (100.01022...) has 3 digits before the radix point.
MATHEMATICA
A366721[n_]:=Floor[Log[Pi, Max[n, 1]]]+1; Array[A366721, 200, 0]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Paolo Xausa, Oct 17 2023
STATUS
approved