login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

G.f. satisfies A(x) = (1 + x)^4 + x*A(x)^4.
2

%I #8 Oct 17 2023 08:34:26

%S 1,5,26,258,3093,40333,558368,8051416,119614784,1818190754,

%T 28142073936,442026009500,7027713442496,112879991541322,

%U 1828959159551328,29857735697705720,490633308020085056,8108894353260093213,134705809490320133544

%N G.f. satisfies A(x) = (1 + x)^4 + x*A(x)^4.

%F a(n) = Sum_{k=0..n} binomial(4*(3*k+1),n-k) * binomial(4*k,k)/(3*k+1).

%o (PARI) a(n) = sum(k=0, n, binomial(4*(3*k+1), n-k)*binomial(4*k, k)/(3*k+1));

%Y Cf. A366267, A366698, A366699.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Oct 16 2023