login
Dirichlet inverse of A366283, where A366283(n) = gcd(n, A366275(n)).
2

%I #9 Oct 08 2023 09:02:31

%S 1,-2,-3,0,-1,6,-1,0,0,2,-1,0,-1,2,5,0,-1,0,-1,0,3,2,-1,0,-24,2,26,0,

%T -1,-10,-1,0,3,2,-3,0,-1,2,3,0,-1,-6,-1,0,-6,2,-1,0,0,48,5,0,-1,-52,

%U -53,0,5,2,-1,0,-1,2,8,0,1,-6,-1,0,3,6,-1,0,-1,2,128,0,-5,-6,-1,0,-78,2,-1,0,-3,2,3,0,-1,12

%N Dirichlet inverse of A366283, where A366283(n) = gcd(n, A366275(n)).

%H Antti Karttunen, <a href="/A366258/b366258.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A366283(n/d) * a(d).

%o (PARI)

%o \\ Needs also the program given in A366275:

%o A366283(n) = gcd(n,A366275(n));

%o memoA366258 = Map();

%o A366258(n) = if(1==n,1,my(v); if(mapisdefined(memoA366258,n,&v), v, v = -sumdiv(n,d,if(d<n,A366283(n/d)*A366258(d),0)); mapput(memoA366258,n,v); (v)));

%Y Cf. A366275, A366283, A366259 (rgs-transform).

%Y Cf. also A364257.

%K sign

%O 1,2

%A _Antti Karttunen_, Oct 07 2023