Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #13 Jan 09 2025 15:44:26
%S 1,1,1,4,1,1,1,4,9,1,1,4,1,1,1,1,1,9,1,4,1,1,1,4,25,1,9,4,1,1,1,1,1,1,
%T 1,36,1,1,1,4,1,1,1,4,9,1,1,1,49,25,1,4,1,9,1,4,1,1,1,4,1,1,9,4,1,1,1,
%U 4,1,1,1,36,1,1,25,4,1,1,1,1,1,1,1,4,1
%N The largest infinitary divisor of n that is a term of A366243.
%C First differs from A335324 at n = 256.
%H Amiram Eldar, <a href="/A366245/b366245.txt">Table of n, a(n) for n = 1..10000</a>
%F Multiplicative with a(p^e) = p^A063695(e).
%F a(n) = n / A366244(n).
%F a(n) >= 1, with equality if and only if n is a term of A366242.
%F a(n) <= n, with equality if and only if n is a term of A366243.
%F From _Peter Munn_, Jan 09 2025: (Start)
%F a(n) = max({k in A366243 : A059895(k, n) = k}).
%F a(n) = Product_{k >= 0} A352780(n, 2k+1).
%F Also defined by:
%F - for n in A046100, a(n) = A008833(n);
%F - a(n^4) = (a(n))^4;
%F - a(A059896(n,k)) = A059896(a(n), a(k)).
%F Other identities:
%F a(n) = sqrt(A366244(n^2)).
%F a(A059897(n,k)) = A059897(a(n), a(k)).
%F a(A225546(n)) = A225546(A248101(n)).
%F (End)
%t f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o (PARI) s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k));
%o a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));}
%Y Cf. A063695, A335324, A366242, A366243, A366244.
%Y See the formula section for the relationships with A008833, A046100, A059895, A059896, A059897, A225546, A248101, A352780.
%K nonn,easy,mult
%O 1,4
%A _Amiram Eldar_, Oct 05 2023