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The problem of minimization the area of self-intersection of a folded rectangle: rectangle with
sides a, b (a<b) is bent along the line that passes through the center of the rectangle in order to get
the minimum area of crossing intersections: a unique rectangle exists for two solutions with equal
area but different shapes - triangle and pentagon. The unique ratio of sides
a/b=T=0.81502370129163... is derived based on the real root of the quintic. If a/b<T ('long’
rectangle) the angle to bent is pi/4. If a/b=1 (square) the angle is Pi/8.
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Overview.

Let the sides of the rectangle: a, b and a<b (the case a=b will be reviewed separately),
also let the angle B: tg p = a/b. Also a is the angle to band the rectangle.

There are a few cases:
1. The angle o changes from 0 to
2. o changes from (3 to (n/2-B)
3. o changes from (n/2-B) to n/2

Case 1.

Let tg a=t, then the area:
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So, we get the eq:
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Due to a/b=tg B, then k=sin 2p = 2tg B /(1+tg*B)= b _ 22ab 5
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This results in the eq: t* —4t> + 4kt —1=0
Here k changes from 0 to 1 (B changes from O to n/4).
Consider the functions: f =t* —4t> —1and g = -4kt for further analysis.
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Case 2.
Pentagon converts into the triangle.
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The minimum area of self-intersection appears at sin 20.=1, i.e. a=n/4, and the area is >

If o gets to (n/2-B), the intersections is like below.

Case 3.
o changes from (/2-B) to /2, we get the pentagon or a rectangle like below



The case of square.
tg B=1, the root of the eq. t* —4t? + 4t —1=0istl=+/2 -1
This means a=n/8 and S= (/2 —1)a>.

Now, consider

f =t*—4t>-1and g =—4kt. If k<0=% then the line g does not cross the f fort €

1 5
0,1). If k=C then g touches f at tO=——. If k changes from k1=1 to k2=—— then the
O.1) 9 7 g 3

appropriate root t1 also changes: (~/2 —1,i).
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So, we can consider the inverse function k =

Let s=tg p=— and u= 2 , this results in s=
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The graph of S(t) at (42 —1,%) and (0.3, 0.9):
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There is such a special tO: if t<t0 then S<a7, and t>t0, S>a7. t0=0.459133..
Uz 4t0 + (t0+1)(1-t0)v6t0? —1—10*
- 1+4t0° —t0*
0.8150237.. Finally, if %<0.8150237..., then the optimal figure is the
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=1.226958..
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triangle with the area a? and a=n/4

If %>0.8150237. .., the optimal figure is the pentagon with the area S and a=arctg

(t1), and the pentagon with the same area and a=n/2-arctg (t1).
The tables for different % and the angles o
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The special case for %(approx. 0.8150237...) results in the optimal figures are
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pentagon and triangle with Sz%.




SUMMARY

Theorem

Rectangle with sides a, b (a<b) is bent along the line that passes through the center of the rectangle
in order to get the minimum area of crossing intersections: a unique rectangle exists for two
solutions with equal area but different shapes - triangle and pentagon. The unique ratio of sides
a/b=T=0.81502370129163... is derived based on the real root of the quintic. If a/b<T (‘long’
rectangle) the angle to bent is pi/4. If a/b=1 (square) the angle is Pi/8.
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