The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A366143 a(n) = a(n-2) + 2*a(n-4) - a(n-10), with a[0..9] = [1, 1, 1, 1, 1, 2, 3, 5, 6, 9]. 1

%I #9 Sep 30 2023 21:47:35

%S 1,1,1,1,1,2,3,5,6,9,11,18,22,35,43,69,84,134,164,263,321,513,627,

%T 1004,1226,1961,2396,3835,4684,7494,9155,14651,17896,28635,34980,

%U 55976,68376,109411,133652,213869,261249,418040,510657,817143,998175,1597247,1951113

%N a(n) = a(n-2) + 2*a(n-4) - a(n-10), with a[0..9] = [1, 1, 1, 1, 1, 2, 3, 5, 6, 9].

%C a(n) is the number of ways to tile a zig-zag strip of n cells using squares (of 1 cell) and strips (of 3 cells). Here is the zig-zag strip corresponding to n=11, with 11 cells:

%C ___ ___

%C ___| |___| |___

%C | |___| |___| |___

%C |___| |___| |___| |

%C | |___| |___| |___|

%C |___| |___| |___|,

%C and here is the strip of 3 cells (which can be reflected)

%C ___

%C ___| |

%C ___| ___|

%C | ___|

%C |___|

%C As an example, here is one of the a(11) = 18 ways to tile the zig-zag strip of 11 cells:

%C ___ ___

%C ___| |___| |___

%C | |___| |___ |___

%C |___| ___| |___ |

%C | ___| |___| |___|

%C |___| |___| |___|

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,2,0,0,0,0,0,-1).

%F a(n) = a(n-2) + 2*a(n-4) - a(n-10).

%F a(2*n) = a(2*n-1) + a(2*n-4) - a(2*n-5) + a(2*n-6).

%F a(2*n+1) = a(2*n) + 2*a(2*n-3) - a(2*n-4) + a(2*n-6) - a(2*n-7).

%F G.f.: (x^8+x^7-x^5-2*x^4+x+1)/(x^10-2*x^4-x^2+1).

%t LinearRecurrence[{0, 1, 0, 2, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 2,

%t 3, 5, 6, 9}, 40]

%Y Cf. A135318.

%K nonn,easy

%O 0,6

%A _Greg Dresden_ and Ziyi Xie, Sep 30 2023

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 23:45 EDT 2024. Contains 375082 sequences. (Running on oeis4.)